
 

www.verifone.com  

Girgit  
Migration Guide 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 Migration Guide Girgit 

    2 
 © Verifone Inc. All rights reserved. 

Girgit Migration Guide 
© 2025 Verifone, Inc. 
 
 
 
 
 
All rights reserved. No part of the contents of this document may be reproduced or transmitted in any 
form without the written permission of Verifone, Inc. 

The information contained in this document is subject to change without notice. Although Verifone has 
attempted to ensure the accuracy of the contents of this document, this document may include errors or 
omissions. The examples and sample programs are for illustration only and may not be suited for your 
purpose. You should verify the applicability of any example or sample program before placing the 
software into productive use. This document, including without limitation the examples and software 
programs, is supplied “As-Is.” 

Verifone and the Verifone logo are registered trademarks of Verifone. Other brand names or trademarks 
associated with Verifone’s products and services are trademarks of Verifone, Inc. 

All other brand names and trademarks appearing in this manual are the property of their respective 
holders. 

Comments? Please e-mail all comments on this document to your local Verifone Support Team. 

 

Verifone, Inc 

1-800-Verifone 

www.verifone.com 

http://www.verifone.com/


 Migration Guide Girgit 

    3 
 © Verifone Inc. All rights reserved. 

Content 

Preface 6 

Purpose 6 

Objective and Scope 6 

Out of Scope 6 

Audience 7 

Definitions and Abbreviations 7 

Related Documentation 8 

Revision History 8 

1. Introduction 9 

1.1 Key Features and Functionalities 10 

1.2 Introduction to Verifone Components for X990 Customers 10 

1.2.1 Verifone Headquarters (VHQ) 10 

1.2.2 VeriShield Remote Key (VRK) 10 

1.2.3 Secure Data Interface (SDI) 11 

1.2.4 EMV Configuration 11 

1.2.5 Security Configuration 11 

2. Migration Strategy 12 

2.1 Migration Process 12 

2.2 Prerequisites 13 

2.3 Changes to Packages and Methods 13 

2.3.1 Girgit External API 13 

2.3.2 Feature Manager 17 



 Migration Guide Girgit 

    4 
 © Verifone Inc. All rights reserved. 

3. Permissions and Functionality Management 19 

3.1 Common Permission Challenges 19 

3.2 Printing Functionality Permissions 20 

4. Privileged Access 22 

4.1 Key Features and Permissions 22 

4.1.1 Hide Navigation Bar 23 

4.1.2 Manage User Certificates 23 

4.1.3 Manage WIFI Profiles 23 

4.1.4 SIM Card Data 24 

4.1.5 Change Device Language 24 

4.1.6 Change Device Date, Time, and Timezone 24 

4.1.7 Manage APN 25 

4.1.8 Manage Screen Brightness 25 

4.1.9 Set Screen Timeout 25 

4.1.10 Manage Private DNS Modes 25 

4.1.11 Change Vendor Passwords 26 

4.1.12 Manage Airplane Mode 27 

4.1.13 Reboot Device 28 

4.1.14 Shut Down Device 28 

5. Android Version Changes and Compatibility 29 

5.1 Android 13 and Above Version Changes 29 

6. User Interface (UI) Considerations 30 

7. VHQ Integration Process 31 

8. Disabling Recent Apps Button 32 



 Migration Guide Girgit 

    5 
 © Verifone Inc. All rights reserved. 

9. EMV Configuration 33 

10.1 Mandatory and Optional EMV Configuration 36 

10. Security Configuration 37 

11.1 Mandatory and Optional Security Configuration 40 

11. Post-Migration Support 41 

12. Troubleshooting AIDL Connection 42 

 

 

  



 Migration Guide Girgit 

    6 
 © Verifone Inc. All rights reserved. 

Preface 

Purpose 
This document outlines the steps for migrating from Verifone X990 device to Neo devices, enabling you 
to use your existing application with minimal code modifications. 

The document will be revised and updated whenever new functionality is developed in a new version of 
the application. 

Objective and Scope 
The objective of this guide is to provide the essential steps and permissions necessary to leverage Girgit 
effectively, thus ensuring that the existing application remain robust and compatible with Neo devices. 
This document also highlights the potential issues that may arise during the migration process, along 
with details on how to resolve them. 

The scope of this guide includes: 

• The migration strategy and system requirements necessary to migrate to Neo devices. 
• Changes made to the existing application, APIs, and UI. 
• Permissions (mandatory and optional) and privileged access. 
• EMV and security configuration details. 
• Issues encountered during migration and best practices to resolve them. 
• Risks identified and their mitigation strategies. 
• Post-migration validation and support. 

Out of Scope 

The following is not included in the migration solution: 

• TMS  

 



 Migration Guide Girgit 

    7 
 © Verifone Inc. All rights reserved. 

Audience 
This guide is intended for the Verifone customers, developers, and technical teams who are migrating 
from Verifone X990 to Verifone Neo devices by using Girgit middleware SDK. 

NOTE 
For customers who are willing to rewrite the application during the 
transition to Neo devices, we recommend utilizing Payment SDK-SDI 
instead of Girgit middleware SDK. 

Definitions and Abbreviations 
The following terms are used in this document: 

Abbreviation Definition 

SDK Software Development Kit 

PSDK Payment Software Development Kit 

VRK VeriShield Remote Key 

VHQ Verifone Headquarters 

SDI Secure Data Interface 

EMV Europay, MasterCard, and Visa 

UI User Interface 

AIDL Android Interface Definition Language 

PCI Payment Card Industry 

PIN Personal Identification Number 

P2PE Point-to-Point Encryption 



 Migration Guide Girgit 

    8 
 © Verifone Inc. All rights reserved. 

Related Documentation 
To learn more Girgit application, refer to the following documents: 

• Girgit Programmers Guide 
• X990 Quick Installation Guide: VPN DOC550-004-EN-A 
• Android 13 Migration for the older applications 

(https://developer.android.com/about/versions/13/behavior-changes-13) 

Revision History 
Date Version Number Description 

17-02-2025 1.0.0 First Release 

  

https://developer.android.com/about/versions/13/behavior-changes-13


 Migration Guide Girgit 

    9 
 © Verifone Inc. All rights reserved. 

1. Introduction 
Girgit service application allows the seamless transition of applications from Verifone X990 devices to 
Verifone Neo devices. It is a middleware SDK (Software Development Kit) developed to streamline the 
migration process. 

Girgit acts as a translation layer that efficiently facilitates the porting of Android solutions with minimal 
application modifications. It abstracts all SDI API calls and replaces them with VFI service API (X990-
SDK). The existing features of X990, which are VF service and system service, are replaced with Girgit 
system service and Girgit device service.  

 
Figure 1: High-level architecture diagram 



 Migration Guide Girgit 

    10 
 © Verifone Inc. All rights reserved. 

1.1 Key Features and Functionalities 
The key features and functionalities offered by Girgit include: 

• Support for Android 13: Girgit enables applications to fully utilize the capabilities of Android 13, 
ensuring that they remain compatible with the latest system enhancements, user interface 
improvements, and security protocols. This support allows developers to integrate advanced 
features and functionalities available in Android 13, providing users with a seamless and up-to-
date experience on Verifone Neo devices. 

• Increased Memory Capacity: Girgit supports more memory, which facilitates the handling of larger 
and more complex applications, improving overall efficiency and performance on Verifone Neo 
devices. 

1.2 Introduction to Verifone Components for X990 Customers 
This section introduces different Verifone components including VeriShield Remote Key (VRK), EMV 
Configuration, Security Configuration, Verifone Headquarters (VHQ), and Secure Data Interface (SDI). 

1.2.1 Verifone Headquarters (VHQ) 

Verifone Headquarters (VHQ) is Verifone’s next-generation terminal management software suite that 
eliminates operational burdens. It empowers the user with management tools for data collection, 
downloads, remote diagnostics, and content management. It is a platform that enables software 
installation, updating of OS, diagnostics, and configuration of applications on devices remotely, where 
different application parameters can be configured, downloaded, and updated in several devices 
simultaneously. VHQ leverages a wide range of experience to provide best-of-breed estate management 
capabilities across a variety of platforms and supports growth-oriented, customer-friendly deployment 
models.  

1.2.2 VeriShield Remote Key (VRK) 

VRK is a PCI PIN and PCI P2PE certified remote key loading system that facilitates remote key 
management for encryption keys on payment devices. It streamlines the process of securely deploying 
and updating encryption keys without requiring physical access to each device. 

The VRK solution uses end to end encryption and mutually authenticated end points. The ends are: The 
VRK HSM (sometimes called the “Key Distribution Host” or the KDH) and the Verifone device (sometimes 



 Migration Guide Girgit 

    11 
 © Verifone Inc. All rights reserved. 

called the “Key Receiving Device” or the KRD). Intermediate systems are never exposed to sensitive data 
and have no ability to decrypt it. 

1.2.3 Secure Data Interface (SDI) 

Secure Data Interface (SDI) provides a secure communication channel between payment devices and 
transaction processing systems. The payment applications interact with SDI to facilitate access to card 
reading, EMV, and security functions such as PIN support, key management, access control, card checks 
etc. It supports card data protection where developers can protect sensitive card holder data inside SDI 
so that applications will not be exposed to this data. On Android solutions, SDI provides access to the 
functions of the secure processor, i.e. SDI runs as a system component with privileged access to security 
domain. It cannot be by-passed when accessing secure domain functions.  

1.2.4 EMV Configuration 

The Verifone EMV configuration framework supports the payment applications and enable them to 
configure and conduct contact and contactless transactions. The EMV framework assists in the 
implementation of different transaction flows and is connected to the application via APIs. EMV 
configuration involves the initialization and management of transactions, ensuring they meet industry 
requirements for security and functionality. This process includes configuring terminal parameters and 
loading the necessary keys to facilitate smooth interactions with EMV-compliant cards. 

The configuration data of the application is stored in the XML files including emv-allowed.xml, emv-
desired.xml, and cardranges.json.  

1.2.5 Security Configuration 

The security configurations are paramount to ensuring safe and compliant transaction processing. It 
includes the encryption and decryption of data using keys. The configuration data is stored in sccfg.json 
file, which defines the security parameters necessary for authentication and data encryption operations.  



 Migration Guide Girgit 

    12 
 © Verifone Inc. All rights reserved. 

2. Migration Strategy 
This chapter provides information on the migration process, prerequisites and system requirements, and 
changes made to the existing APIs used for X990 devices.  

2.1 Migration Process 
The solution uses a Replatform and device update migration strategy for transitioning applications from 
the source device (X990) to the target device (Neo). This strategy encompasses a structured approach 
to ensure seamless application compatibility and optimal performance on the Neo device. 

The migration process is divided into four distinct phases, each addressing specific aspects of the 
transition to the Neo device: 

Phase 1: Application Interface and Configuration Updates 

In this phase, focus is directed towards the installation and necessary modifications at the application 
level. Some of the key tasks include: 

• Updating the User Interface (UI) components to align with the Neo device's specifications. 
• Modifying the manifest file to ensure compatibility with target platform requirements. 
• Updating Gradle build configurations/files. 

Phase 2: Android Interface Definition Language (AIDL) Transition 

This phase encompasses updates related to AIDL, which are crucial for inter-process communication and 
service binding. This includes: 

• Replacing existing AIDL files specific to X990 with those suitable for Neo devices. 
• Installing and configuring required software components to support AIDL changes on the Neo 

platform. 

Phase 3: Android OS Version Upgrade 

This phase facilitates the migration from Android 8 to Android 13 OS versions. This includes modifications 
to the manifest file to ensure application compatibility with the updated OS features.  



 Migration Guide Girgit 

    13 
 © Verifone Inc. All rights reserved. 

Refer to Chapter 5 for more details. 

Phase 4: Package and API Changes 

The final phase focuses on the structural aspects of the application to fully enable its operation on Neo 
devices. It includes the changes made to the existing packages and APIs used for X990 devices.  

Refer to Section 2.3 for more information on the list of methods added for the migration.  

2.2 Prerequisites 
Before beginning the migration process, ensure that the below applications are installed: 

1. Girgit 
2. GirgitSystemService 

These applications contain the necessary frameworks and additional AIDL interfaces (included under 
AIDL.zip file) to support the migration. 

2.3 Changes to Packages and Methods 
The following are introduced as optional entities in Girgit as opposed to VFI service (X990):  

• Privileged services: Refer to Chapter 4 for more details.  
• Girgit external API 
• Feature Manager and OpenSDI 

2.3.1 Girgit External API 

The solution provides 2 new Girgit AIDLs along with an addition of APIs in the existing 5 AIDLs.  

The newly added AIDLs are: 

1. ISettingsManager.aidl: Introduced as a new interface for managing settings within the Girgit 
framework. It manages various device settings, such as configuring time and date, setting screen 
brightness, and enabling permissions. Below is the list of APIs under this interface: 

S. No APIs Description 



 Migration Guide Girgit 

    14 
 © Verifone Inc. All rights reserved. 

1. int settingsSetActions(int settingsType, in 
Bundle bundle) 

Executes setting changes.  

2. Bundle settingsReadActions(int 
settingsType, in Bundle bundle) 

Reads current settings. 

3. boolean settingPCIRebootTime(int hour, 
int min, int sec) 

Sets the PCI reboot time. 
 

4. long getPCIRebootTime() Retrieves the PCI reboot time in seconds. 
 

5. void setScreenLock(boolean isLock) Locks or unlocks the screen. 
 

6. boolean setDeviceBrightnessLevel(int 
level) 

Sets the device brightness level. 

7. boolean isShowBatteryPercent(boolean 
isShow) 

Determines whether to show the battery percentage in the status 
bar. 

8. void enableAlertWindow(String 
packageName) 

Enables alert window permissions for a specific package. 

9. void clearCachesByPackageName(String 
packageName) 

Clears application caches for a specified package. 

2. IFFBase.aidl:  This interface provides methods to retrieve the base IP address and check the 
connection status with the base unit. Below is the list of APIs under this interface: 

S. No APIs Description 

1. byte[] getBaseIpAddress() Retrieves the IP address of the base unit. 

2. boolean isBaseConnected() Checks if there is an active connection to the base unit. 

The existing AIDLs with newly added APIs are: 

1. IDeviceInfo.aidl: This interface provides several methods for effectively managing and retrieving 
information about a device. Below is the list of 3 newly added APIs under this interface.  



 Migration Guide Girgit 

    15 
 © Verifone Inc. All rights reserved. 

S. No API Description 

1.  int getDeviceStatus(in Bundle bundle) Checks the status of various device components such as 
printers, card readers, pin pads, cameras, and SD cards. 

2. String getButtonBatteryVol() Retrieves the voltage of the button battery. 

3. Bundle getDeviceInfo() Provides comprehensive information about the device. 

 

2. INetworkManager.aidl: This interface provides a set of methods to manage network-related 
operations on devices. Below is the list of 8 newly added APIs under this interface. 

S. No API Description 

1.  boolean isMultiNetwork() Checks if multi-network support is enabled 

2. void setMultiNetwork(boolean enable) Enables or disables multi-network support 

3. String getMultiNetworkPrefer() Retrieves the current multi-network preference 

4. boolean setMultiNetworkPrefer(String 
prefer) 

Sets the preferred network order for multi-network. 

5. void setEthernetStaticIp(in Bundle 
bundle) 

Configures a static IP for Ethernet or switches to DHCP. 

6. void setWifiStaticIp(in Bundle bundle) Configures a static IP for Wi-Fi or switches to DHCP 

7. void 
setMobilePreferredNetworkType(String 
type) 

Sets the preferred mobile network type for the current SIM card. 

8. String getMobilePreferredNetworkType() Retrieves the preferred mobile network type for the current SIM 
card. 

 

3. ISystemManager.aidl: This interface provides a set of methods to manage system-level operations 
on the device. Below is the list of 9 newly added APIs under this interface. 



 Migration Guide Girgit 

    16 
 © Verifone Inc. All rights reserved. 

S. No API Description 

1.  boolean isAdbMode() Retrieves the status of ADB. 

2. boolean killApplication(String 
packageName) 

Terminates the application specified by the packageName. 

3. boolean restartApplication(String 
packageName) 

Restarts the application specified by the packageName. 

4. void initLogcat(int logcatBufferSize, int 
logcatBufferSizeSuffix, in Bundle bundle) 

Initializes the logcat configuration with specified buffer size and 
prefix. 

5. String getLogcat(String logcatFileName, 
int compressType) 

Retrieves the log buffer file. 

6. Bundle getLaunchAppsInfo(long 
beginTime, long endTime) 

Retrieves the usage count of applications within a specified time 
range. 

7. ISettingsManager getSettingsManager() Retrieves an ISettingsManager object to perform settings-
related actions. 

8. Bitmap takeCapture() Captures the current screen and returns the bitmap data. 

9. void shutdownDevice() Shuts down the device. 

 

4. IBeeper.aidl: This interface provides methods to programmatically manage the beeping 
functionality of the device. Below is 1 newly added API under this interface. 

S. No API Description 

1.  void startBeepWithConfig(int msec, in 
Bundle bunble) 

Initiates a beeping sound based on the specified configuration 

 

5. IDeviceService.aidl: This interface acts as a central point in an application, facilitating access to 
various peripheral device services associated with a terminal. Below is the list of 3 newly added APIs 
under this interface. 



 Migration Guide Girgit 

    17 
 © Verifone Inc. All rights reserved. 

S. No API Description 

1.  WirelessConnectListener 
getWirelessConnectionMgr() 

Retrieves the WirelessConnectionMgr object. 

2. IGirgitExt getGirgitExt() Retrieves the GirgitExt object. 

3. IFFBase getFFBase() Provides access to the FFBase object. 

 

Refer to Girgit Programmers Guide for more details on each API. 

2.3.2 Feature Manager 

The solution includes an optional Feature Manager Service, specifically developed for handling non-EMV 
card transactions. The Feature Manager is a background service responsible for enabling specific 
features within the Girgit service. One key feature currently managed by this service is the enablement of 
OpenSDI, which allows for direct APDU command exchanges. 

NOTE 
Feature Manager Service is non-P2PE complaint. To use this service, 
contact the Verifone Support Team. 

OpenSDI: 

In Girgit, the `whitelist.json` file is not included in the default configuration provided with the SDI base and 
SDI config packages. However, if the user application requires it, you can install this file through a User 
config package. 

The SDI Server do not deliver payment relevant sensitive data (e.g. a PAN) as clear text to an outside 
application. Such data elements are either encrypted or obfuscated to prevent unauthorized data access. 
There are cases where it is necessary to deviate from this rule (e.g. for loyalty cards). The SDI Server 
manages this with a list of PAN ranges which are excluded from the secure data handling. SDI-Server 
performs a check of the first digits of the PAN with the PAN’s given in the whitelist. Also ranges of PANs 
are allowed. 

Example: 



 Migration Guide Girgit 

    18 
 © Verifone Inc. All rights reserved. 

[ 

"4377","88888","78787878","10000","600000-601099" 

] 

The `whitelist.json` file serves two main purposes: 

1. It whitelists the set of cards that will block sensitive payment-related data, such as the Primary 
Account Number (PAN).    

2. If there is a need for a clear PAN format, then it can be added in the whitelist.json file.  
3. It enables or disables OpenSDI direct SDI commands. If the file contains the value `[OPENSDI]`, 

OpenSDI is enabled, allowing customers to interact with the card using direct SDI commands. By 
default, the file contains the values [0,1,2,3,4,5,6,7,8,9]. 



 Migration Guide Girgit 

    19 
 © Verifone Inc. All rights reserved. 

3. Permissions and Functionality 
Management  

3.1 Common Permission Challenges   
If the following runtime exception in the application is encountered, it indicates a permission-related issue 
that needs to be addressed. 

The application throws a `java.lang.RuntimeException` when attempting to start an activity. This is 
caused by a `java.lang.SecurityException`, indicating that the application does not have the 
`android.permission.READ_PHONE_STATE` permission.  

Issue: 

by: java.lang.SecurityException: getActiveSubscriptionInfoForSimSlotIndex: uid 10101 does 

not have android. 

permission.READ_PHONE_STATE. 

at android.os.Parcel.createException(Parcel.java:2072) 

at android.os.Parcel.readException(Parcel.java:2040) 

at android.os.Parcel.readException(Parcel.java:1988) 

at 

com.android.internal.telephony.ISub$Stub$Proxy.getActiveSubscriptionInfoForSimSlotIndex(ISub

.java:1308) 

at 

android.telephony.SubscriptionManager.getActiveSubscriptionInfoForSimSlotIndex(SubscriptionM

anager.java:1272) 

 

Solution: 

To resolve the aforementioned issue, modify the `isSimReady()` method in the `SimUtil.java` class and 
remove the annotation as shown below: 

@SuppressLint("MissingPermission") 

and change the code as follows 

 

 

public static boolean isSimReady(Context context, int slot) { 

    SubscriptionManager subscriptionManager = (SubscriptionManager) 

context.getSystemService(Context.TELEPHONY_SUBSCRIPTION_SERVICE); 

    if (subscriptionManager == null) { 



 Migration Guide Girgit 

    20 
 © Verifone Inc. All rights reserved. 

        LogUtil.e(TAG, "subscriptionManager is null"); 

        return false; 

    } 

 

    // Permission check added here 

    if (ActivityCompat.checkSelfPermission(context, Manifest.permission.READ_PHONE_STATE) != 

PackageManager.PERMISSION_GRANTED) { 

        // TODO: Consider calling 

        //    ActivityCompat#requestPermissions 

        // here to request the missing permissions, and then overriding 

        //   public void onRequestPermissionsResult(int requestCode, String[] permissions, 

        //                                          int[] grantResults) 

        // to handle the case where the user grants the permission. See the documentation 

        // for ActivityCompat#requestPermissions for more details. 

        return true; 

    } 

    SubscriptionInfo subscriptionInfo = 

subscriptionManager.getActiveSubscriptionInfoForSimSlotIndex(slot); 

    if (subscriptionInfo == null) { 

        LogUtil.d(TAG, "slot " + slot + " has no SIM"); 

        return false; 

    } 

 

    TelephonyManager mTelephonyManager = (TelephonyManager) 

context.getSystemService(Context.TELEPHONY_SERVICE); 

    boolean isSimCardExist = false; 

    try { 

        Method method = TelephonyManager.class.getMethod("getSimState", int.class); 

        int simState = (Integer) method.invoke(mTelephonyManager, new Object[]{slot}); 

        if (TelephonyManager.SIM_STATE_READY == simState) { 

            isSimCardExist = true; 

        } 

    } catch (Exception e) { 

        LogUtil.d(TAG, "e:" + e.toString()); 

        e.printStackTrace(); 

    } 

 

    LogUtil.d(TAG, "isSimCardExist:" + isSimCardExist); 

 

    return isSimCardExist; 

} 

 

 

3.2 Printing Functionality Permissions   
To enable image printing in Android 13 version and above, add the below permission in the Android 
Manifest file: 



 Migration Guide Girgit 

    21 
 © Verifone Inc. All rights reserved. 

<uses-permission android:name="android.permission.READ_MEDIA_IMAGES" /> 

Modify the code for image printing as shown below: 

private String createDirectoryAndSaveFile(byte[] imageData) { 

        File file = null; 

        OutputStream stream = null; 

        File storageDir = null; 

        if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.TIRAMISU) { 

            //Android 13 Specific changes for Image storage 

            storageDir = 

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_PICTURES); 

        } else { 

            storageDir = 

DeviceMaster.getInstance().getAppContext().getExternalFilesDir(Environment.DIRECTORY_PICTURE

S); 

        } 

        try { 

            String contentType = URLConnection.guessContentTypeFromStream(new 

ByteArrayInputStream(imageData)).replace(REPLACE_STRING, "."); 

            file = new File(storageDir, IMAGE_NAME + Math.random() + contentType); 

  

            stream = new FileOutputStream(file); 

  

        } catch (FileNotFoundException e) { 

            LogUtil.e(TAG, "File not found", e); 

        } catch (IOException e) { 

            LogUtil.e(TAG, "File not created", e); 

        } finally { 

            if (stream != null) { 

                try { 

                    stream.write(imageData); 

                    stream.flush(); 

                    stream.close(); 

                } catch (IOException e) { 

                    LogUtil.e(TAG, "Exception while writing file.", e); 

                } 

            } 

        } 

        Uri savedImageURI = null; 

        if (file != null) { 

            savedImageURI = Uri.parse(file.getAbsolutePath()); 

        } 

        return savedImageURI != null ? savedImageURI.toString() : ""; 

    } 



 Migration Guide Girgit 

    22 
 © Verifone Inc. All rights reserved. 

4. Privileged Access   
This chapter outlines the specific permissions required for on-demand privileged applications. These 
applications have enhanced access and capabilities, allowing them to utilize specific functionalities not 
available to standard applications. 

Note that privileged applications are for customers using certain system settings which are restricted by 
android due to security and memory constraints.  

During migration, ensure that you adhere to the below guidelines for managing privileged access. 

NOTE 
For more details on privileged access, contact Verifone Support 
Team. 

4.1 Key Features and Permissions  
Package naming convention: 

The application’s package name must begin with ‘com.priv.’. This naming convention is a requirement for 
identifying applications that are eligible for privileged access. 

Alternatively, you can create a separate service with package name starting with ‘com.priv.’ This service 
will handle requests that require elevated permissions.  

NOTE 
For more details on Android permissions, refer to 
https://developer.android.com/reference/android/Manifest.permission 

 

With this naming convention, the application is granted access to the following permissions and custom 
APIs for requested features: 



 Migration Guide Girgit 

    23 
 © Verifone Inc. All rights reserved. 

4.1.1 Hide Navigation Bar 

To hide the navigation bar, set the device_operating_mode to 3 which corresponds to KIOSK mode. 
Subsequently, send a broadcast intent programmatically to update the mode dynamically. 

Example: 

Settings.Global.putInt(getActivity().getContentResolver(), "device_operating_mode", 3); 

Intent intent = new Intent("com.verifone.DEVICE_OPERATING_MODE"); 

getActivity().sendBroadcast(intent); 

 

KIOSK Mode: 

The following behavior is enforced when KIOSK mode is enabled: 

• The screen operates in immersive mode, ensuring that the navigation or status bar remain hidden 
when user touches the screen. 

• All soft keys are hidden except within the Settings and other system UI views, where the back key 
is available. 

• Hardware keys: 
o The 'Recents' key is always disabled. 
o The Home key is disabled while a payment application is in the foreground but is otherwise 

available to help return to the home application. 
o The Back key is always available. 

4.1.2 Manage User Certificates 

Verifone employs a proprietary mechanism for the installation and removal of CA certificates via the 
UpdateService. Privileged customers have the option to utilize this feature for managing certificates. 

4.1.3 Manage WIFI Profiles 

To connect to the desired Wi-Fi networks, the privileged application must have the following specific 
permissions in the Android manifest file: 

1. ACCESS_FINE_LOCATION 

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" /> 

2. ACCESS_WIFI_STATE 



 Migration Guide Girgit 

    24 
 © Verifone Inc. All rights reserved. 

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" /> 

3. CHANGE_WIFI_STATE 

<uses-permission android:name="android.permission.CHANGE_WIFI_STATE" /> 

4. NETWORK_SETTINGS 

<uses-permission android:name="android.permission.NETWORK_SETTINGS" /> 

4.1.4 SIM Card Data 

To retrieve SIM card data, following permissions are needed in the Android manifest file: 

1. READ_PRIVILEGED_PHONE_STATE: This permission allows the application to retrieve detailed 
SIM card information.  

<uses-permission android:name="android.permission.READ_PRIVILEGED_PHONE_STATE" /> 

2. READ_PHONE_STATE: This permission is classified as dangerous by Android. As a result, the 
application must request the user's permission by implementing the `requestPermissions()` 
method to gain access. 

<uses-permission android:name="android.permission.READ_PHONE_STATE" /> 

4.1.5 Change Device Language 

To change the device language, the application requires the following permissions in the Android 
manifest file: 

1. WRITE_SECURE_SETTINGS 

<uses-permission android:name="android.permission.WRITE_SECURE_SETTINGS" /> 

2. CHANGE_CONFIGURATION 

<uses-permission android:name="android.permission.CHANGE_CONFIGURATION" /> 

4.1.6 Change Device Date, Time, and Timezone 

To change the device date, time, and timezone, the application requires the following permissions in the 
Android manifest file: 



 Migration Guide Girgit 

    25 
 © Verifone Inc. All rights reserved. 

1. SET_TIME 

<uses-permission android:name="android.permission.SET_TIME" /> 

2. SET_TIME_ZONE 

<uses-permission android:name="android.permission.SET_TIME_ZONE" /> 

4.1.7 Manage APN 
To configure or update the APN settings, the application requires the following permission in the Android 
manifest file:  

1. WRITE_APN_SETTINGS 

<uses-permission android:name="android.permission.WRITE_APN_SETTINGS" /> 

4.1.8 Manage Screen Brightness 

To modify the screen brightness functionality, the application requires the following permission in the 
Android manifest file: 

1. WRITE_SECURE_SETTINGS 

<uses-permission android:name="android.permission.WRITE_SECURE_SETTINGS" /> 

4.1.9 Set Screen Timeout 

To set the screen timeout duration, the application requires the following permission in the Android 
manifest file: 

1. WRITE_SECURE_SETTINGS 

<uses-permission android:name="android.permission.WRITE_SECURE_SETTINGS" /> 

4.1.10 Manage Private DNS Modes 
To manage private DNS modes, the application requires the following permission in the Android manifest 
file: 

1. WRITE_SECURE_SETTINGS 

<uses-permission android:name="android.permission.WRITE_SECURE_SETTINGS" /> 



 Migration Guide Girgit 

    26 
 © Verifone Inc. All rights reserved. 

4.1.11 Change Vendor Passwords 

The features required for changing vendor passwords are facilitated by the Usermanagement 
application. Privileged applications can perform the following actions: 

1. Check if the user management is configured using the content provider: 

private static final String USER_AUTH_CP = 

"com.verifone.user.auth.action.USER_AUTH_CONTENT_PROVIDER"; 

private static final String URI_SCHEME = "content"; 

private static final String USER_PATH_STATUS = "STATUS"; 

private static final String COL_NAME_RESULT = "RESULT"; 

private static final String COL_NAME_TIMEOUT = "TIMEOUT"; 

  

ProviderInfo providerInfo = null; 

Intent intent = new Intent(USER_AUTH_CP); 

List<ResolveInfo> queryIntentContentProviders = 

context.getPackageManager().queryIntentContentProviders(intent, 0); 

for (ResolveInfo resolveInfo : queryIntentContentProviders) { 

    providerInfo = resolveInfo.providerInfo; 

} 

  

if (providerInfo != null) { 

    Uri.Builder builder = new 

Uri.Builder().scheme(URI_SCHEME).authority(providerInfo.authority); 

    builder.appendPath(USER_PATH_STATUS); 

  

    Uri contentUri = builder.build(); 

    try (Cursor cursor = context.getContentResolver().query(contentUri, null, null, null, 

null)) { 

        if (cursor != null && cursor.getCount() == 1) { 

            cursor.moveToNext(); 

            boolean result = cursor.getInt(cursor.getColumnIndex(COL_NAME_RESULT)) == 1; 

            if (result) { return true; 

            } else { 

                int timeout = cursor.getInt(cursor.getColumnIndex(COL_NAME_TIMEOUT)); 

                Log.e(TAG, “Operation timed out ” + timeout); 

                return false; 

            } 

        } 

    } 

} 

 

2. Start user management activity to authorize or manage users: 

private static final String INTENT_REQUEST_ACTION = 

"com.verifone.user.auth.intent.action.REQUEST"; 



 Migration Guide Girgit 

    27 
 © Verifone Inc. All rights reserved. 

private static final String USER_AUTH_PACKAGE = "com.verifone.user.auth"; 

private static final String USER_AUTH_ACTIVITY = 

"com.verifone.user.auth.view.UserAuthActivity"; 

  

Intent intent = new Intent(“INTENT_REQUEST_ACTION”); 

intent.setClassName(USER_AUTH_PACKAGE, USER_AUTH_ACTIVITY); 

intent.putExtra(“INTENT_EXTRA_REQUEST_TYPE”, requestType); 

intent.putExtra(“INTENT_EXTRA_USER_ROLE_TYPE”, role); 

 

Here, the requestType and role can be: 

requestType Role Action 

MANAGE Null Setup/update passcodes 

AUTHORIZE MERCHANT_ADMIN Used to protect restricted features like 
factory reset 

MERCHANT_MANAGER Authorize existing manager 

MERCHANT_CASHIER Authorize existing cashier 

 

4.1.12 Manage Airplane Mode 

To manage the airplane mode, the application requires the following permission in the Android manifest 
file: 

1. WRITE_SECURE_SETTINGS 

<uses-permission android:name="android.permission.WRITE_SECURE_SETTINGS" /> 

To turn on airplane mode, the applications must execute the following code: 

Settings.Global.putInt(getActivity().getContentResolver(), Settings.Global.AIRPLANE_MODE_ON, 

isEnabled ? 1 : 0); 

Intent intent = new Intent(Intent.ACTION_AIRPLANE_MODE_CHANGED);intent.putExtra(STATE, 

isEnabled); 

getActivity().sendBroadcast(intent); 

 



 Migration Guide Girgit 

    28 
 © Verifone Inc. All rights reserved. 

4.1.13 Reboot Device 

To reboot the device, the application requires the following permission in the Android manifest file: 

1. REBOOT 

<uses-permission android:name="android.permission.REBOOT" /> 

The privileged application must also execute the following: 

PowerManager pm = (PowerManager)getContext().getSystemService(Context.POWER_SERVICE); 

pm.reboot("reboot-reason"); 

 

4.1.14 Shut Down Device 

To shut down the device, the application requires the following permissions in the Android manifest file: 

1. SHUTDOWN 

<uses-permission android:name="android.permission.SHUTDOWN" /> 

The privileged application must also execute the following: 

Intent intent = new Intent(Build.VERSION.SDK_INT >= 26 

                ? "com.android.internal.intent.action.REQUEST_SHUTDOWN" 

                : "android.intent.action.ACTION_REQUEST_SHUTDOWN"); 

    intent.putExtra("android.intent.extra.KEY_CONFIRM", false);    // request confirmation 

from the user before shutting down?(True/False) 

    intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK); 

    context.startActivity(intent); 

 

 

  

 



 Migration Guide Girgit 

    29 
 © Verifone Inc. All rights reserved. 

5. Android Version Changes and 
Compatibility 

5.1 Android 13 and Above Version Changes  
In Android 13 and later versions, direct connections to bound services require additional configuration 
and changes to the manifest file. Specifically, you must include the AIDL application's package name in 
the manifest file.  

Add the following code in the android manifest file before the application tag: 

<queries> 

<package android:name="com.vfi.smartpos.deviceservice" /> 

<-- other Aidl packages if any required 

</queries> 



 Migration Guide Girgit 

    30 
 © Verifone Inc. All rights reserved. 

6. User Interface (UI) Considerations   
As Verifone Neo devices uses soft navigation keys (such as home, recent, and back buttons), the UI 
layouts provided by X990 cannot be used as it has some hard coded values for width and height. 

To resolve this issue, we recommend using Constraint layout which works on all kind of screen sizes. 

Device Features 

Device Display 

Neo Device (V660p) Large 5.5” LCD display; (720 × 1280) HD IPS LCD touchscreen 

X990 (Pinpad) 4” Capacitive touch screen (800 × 480) 

 

 

 



 Migration Guide Girgit 

    31 
 © Verifone Inc. All rights reserved. 

7. VHQ Integration Process 
In case if issues arise due to the heartbeat and sending responses back to VHQ, follow the steps below: 

1) Place the VHQ agent file in the libs folder of the presentation project. 

2) Add the newly built GAndroidTms library in the libs folder of the domain project. 

3) Update the gradle file as follows: 

// In the build.gradle file of domain 

implementation files('libs/GAndroidTmsLib_debug-1.0.0.0.aar') 

// In the build.gradle file of presentation 

implementation files('../domain/libs/GAndroidTmsLib_debug-1.0.0.0.aar') 

implementation files('libs/vhq-agent-api-debug-4.3.34.0.aar') 

implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk7:1.5.30" 

 

4) In the code, ensure that you pass true once the file download is completed. 

if (GAndroidTMSLib.getInstance() != null && VHQService.getHandleTemp() != null) { 

LogUtil.d(TAG, "Execute updating VHQ status"); 

GAndroidTMSLib.getInstance().sendFileStatus(true); 

} 

 



 Migration Guide Girgit 

    32 
 © Verifone Inc. All rights reserved. 

8. Disabling Recent Apps Button 
To disable the recent apps button, add the following code in BaseActivity of the Application, so that it 
reflects for the whole application: 

@Override 

protected void onPause() { 

super.onPause(); 

android.app.ActivityManager activityManager = 

(android.app.ActivityManager)getApplicationContext() 

.getSystemService(Context.ACTIVITY_SERVICE); 

activityManager.moveTaskToFront(getTaskId(), 0); 

} 

 



 Migration Guide Girgit 

    33 
 © Verifone Inc. All rights reserved. 

9. EMV Configuration 
The Verifone EMV configuration framework supports the payment applications and enable them to 
configure and conduct contact and contactless transactions. The configuration data of the application is 
stored in the XML files including emv-allowed.xml, emv-desired.xml, and cardranges.json. 

emv-allowed.xml: 

The default EMV configuration file is emv-allowed.xml. This configuration is used by the ADK EMV 
contact and contactless frameworks to judge if a desired L2 kernel is allowed to load. 

NOTE 
This configuration is device specific and cannot be overloaded with a 
User config package or removed with a User config removal 
package. 

emv-desired.xml: 

For customization of EMV configuration, emv-desired.xml file is used. This file is not allowed in EMV 
configuration package. Use a user config package to install this file. 

This file contains device specific lists of L2 kernels – contact and contactless – that a main application 
needs to select. Intentionally, there is no default setting. This is to avoid a change of the kernel set loaded 
after an update of the ADK components. Instead, a main application must provide its own emv-
desired.xml and install it either as a user config package or together with the user-signed main 
application.  

NOTE 
Available certifications decide which kernel version is allowed to use 
on which terminal. 

cardranges.json:  



 Migration Guide Girgit 

    34 
 © Verifone Inc. All rights reserved. 

This file is used for mapping of different cards within the allowed card ranges. The card range 
configuration serves to realize card related checks inside the SDI Server because the outside application 
will not get all relevant data in clear. 

Each card range must be configured as element of a JSON array which can be called either 
staticRanges or dynamicRanges. These are customer specific range categories and are not relevant for 
the matching and validation algorithm. 

Example: 

{ 

    "details": { 

        "name": "PaymentCore Template", 

        "templateVersion": "1.0.2", 

        "generated": "2021-07-7T11:28:00.603+13:00" 

    }, 

    "defaults": { 

        "minPanLength": 13, 

        "maxPanLength": 19, 

        "expiryChecking": true, 

        "serviceCodeCheck": true, 

        "luhnChecking": true, 

        "startDateChecking": false, 

        "startDatePosition": 8, 

        "startDateFormat": "YYMM" 

    }, 

    "staticRanges": [ 

        { 

            "low": "000000000000", 

            "high": "999999999999", 

            "products":["DEBIT"], 

            "minPanLength": 14, 

            "maxPanLength": 19, 

            "expiryChecking": true, 

            "serviceCodeCheck": true, 

            "luhnChecking": true, 

            "panMasking": "6-4fix" 

        }, 

        { 

            "low": "18000", 

            "high": "18009", 

            "products":["JCB"], 

            "minPanLength": 13, 

            "maxPanLength": 16, 

            "expiryChecking": true, 

            "serviceCodeCheck": true, 

            "luhnChecking": true 

        }, 



 Migration Guide Girgit 

    35 
 © Verifone Inc. All rights reserved. 

        ...  // n more entries 

    ], 

    "dynamicRanges": [ 

        { 

            "low": "5116545113", 

            "high": "5116545113", 

            "products":["DEBIT", "MASTERCARD-DEBIT"], 

            "minPanLength": 13, 

            "maxPanLength": 19, 

            "expiryChecking": true, 

            "serviceCodeCheck": true, 

            "luhnChecking": true 

        }, 

        { 

            "low": "423953000", 

            "high": "423953999", 

            "products":["DEBIT", "VISA-DEBIT"], 

            "minPanLength": 13, 

            "maxPanLength": 19, 

            "expiryChecking": true, 

            "serviceCodeCheck": true, 

            "luhnChecking": true 

        }, 

        ... // n more entries 

    ] 

} 

 

The defaults sections can contain default values for several range attributes which should be used by 
the SDI Server for ranges where a given attribute is missing. Following range attributes can be configured 
in the defaults section: 

• maxPanLength 
• minPanLength 
• expiryChecking 
• luhnChecking 
• startDateChecking 
• serviceCodeCheck 
• startDatePosition 
• startDateFormat 

The details section provides general information about the validation table such as name, 
templateVersion and generated to give the name, the version and the generation date of the validation 
table. The details section is returned by the SDI Server with getValidationInfo command. 



 Migration Guide Girgit 

    36 
 © Verifone Inc. All rights reserved. 

NOTE 
cardranges.json is not provided with SDI default configuration 
coming along with the SDI base package and SDI config package. If 
desired by user application, the file can be installed with a User 
config package. 

 

10.1 Mandatory and Optional EMV Configuration  
Mandatory File: 

The below mandatory file is crucial for enabling basic EMV functionality. 

• emv-allowed.xml: The default EMV configuration file. It outlines the core settings needed for EMV 
operations, ensuring compliance and interoperability with EMV standards. 

Optional Files: 

The below optional files provide additional customization and flexibility. 

• emv-desired.xml: Used for customization of EMV configuration. 
• cardranges.json: Used for mapping of different cards within the allowed card ranges. 



 Migration Guide Girgit 

    37 
 © Verifone Inc. All rights reserved. 

10. Security Configuration 
The security configurations are paramount to ensuring safe and compliant transaction processing. It 
includes the encryption and decryption of data using keys. The configuration data is stored in sccfg.json 
file, which defines the security parameters necessary for authentication and data encryption operations. 

sccfg.json: 

sccfg.json contains the default configuration for the ADKSEC security service, which is used by the SDI 
Server for secure operations. The file is provided with SDI default configuration coming along with SDI 
base package and it contains the following security schemes: 

• ADE (SRED compliant) scheme used for cardholder sensitive data encryption. 
• PED scheme for PIN block encryption (online transactions) and host message MAC calculation. 
• E2E scheme for using VSS script authenticate.vso, which allows secure SDI message 

authentication/encryption. 

These security schemes require several keys loaded to device.  

Example sccfg.json (with one security scheme for ADE): 

{ 

  "adksecconfig": 

  { 

    "hosts": 

    [ 

      { 

        "name": "X990-DUKPT-AES-ECB", 

        "description": "this is ADE DUKPT configuration", 

        "scheme": "schemeADE", 

        "module": "ADE", 

        "settings": 

        { 

          "encMode": "MODE_CBC", 

          "IVType":  "ZERO", 

          "padding": "NONE" 

        } 

      } 

    ], 

    "serviceCfg": 

    { 

      "secSchemes": 

      [ 



 Migration Guide Girgit 

    38 
 © Verifone Inc. All rights reserved. 

        { 

          "name": "schemeADE", 

          "settings": 

          { 

            "padding": "PKCS7", 

            "KeyManagementType": "DUKPT", 

            "KeyAddressTable": 

            [ 

              {"description": "| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8 |  9 | 10 | <- 

KeySetId (10 slots)"}, 

              {"encryptData": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]} 

            ] 

          } 

        } 

      ] 

    } 

  } 

} 

 

The below table demonstrates the host names corresponding to the Sec Module and Scheme that 
should be used in the sccfg.json. 

Type Scheme Algorithm Enc 

mode 

Host name Sec Module 

PIN MSK TDES 
 

X990-PIN-MSK-TDES TDES-MSK 

DUKPT 
 

X990-PIN-DUKPT-TDES TDES-DUKPT 

Master/Work key DUKPT TDES ECB X990-DUKPT-TDES-ECB TDES-DUKPT 

CBC X990-DUKPT-TDES-CBC 

AES ECB X990-DUKPT-AES-ECB AES-DUKPT 

CBC X990-DUKPT-AES-CBC 



 Migration Guide Girgit 

    39 
 © Verifone Inc. All rights reserved. 

MSK TDES ECB X990-MSK-TDES-ECB TDES-MSK 

CBC X990-MSK-TDES-CBC 

AES ECB X990-MSK-AES-ECB Not implemented by SEC 

CBC X990-MSK-AES-CBC 

MAC 

 

 

 

 

 

 

 

 

  

MSK 

  

TDES ECB X990-MAC-MSK-TDES-

ECB 

TDES-MSK 

  

CBC X990-MAC-MSK-TDES-

CBC 

X99 X990-MAC-MSK-TDES-

X99 

X919 X990-MAC-MSK-TDES-

X919 

DUKPT 

 

 

 

 

  

ECB X990-MAC-DUKPT-TDES-

ECB 

TDES-DUKPT 

 

  

CBC X990-MAC-DUKPT-TDES-

CBC 

X99 X990-MAC-DUKPT-TDES-

X99 



 Migration Guide Girgit 

    40 
 © Verifone Inc. All rights reserved. 

X919 X990-MAC-DUKPT-TDES-

X919 

AES 

  

ECB X990-MAC-DUKPT-AES-

ECB 

AES-DUKPT 

 

  

CBC X990-MAC-DUKPT-AES-

CBC 

X99 X990-MAC-DUKPT-AES-

X99 

X919 X990-MAC-DUKPT-AES-

X919 

 

NOTE 
If desired by user application, sccfg.json can be installed with a User 
config package to overload default file of SDI base package. 

 

11.1 Mandatory and Optional Security Configuration 
  

Mandatory Optional 

scccfg.json: ADKSEC default configuration for SDI server. scccfg.json: This file can be modified and 
replaced/overloaded by a User config package as per the 
requirement of the user application. 



 Migration Guide Girgit 

    41 
 © Verifone Inc. All rights reserved. 

11. Post-Migration Support 
Girgit Support Process 

When an existing customer needs a new feature or identifies a defect, they must initiate the process by 
creating a ticket on the JIRA Service Desk (JSD) platform. JSD (https://jiraservicedesk.verifone.com) is a 
customer facing JIRA portal that is used as an external/internal ticketing system. Once a JSD ticket is 
submitted, it is assigned to the Girgit development team, who will work to resolve the issue according to 
the specified requirements. 

Girgit Release  

All the latest Girgit releases will be released in the Verifone Cloud, where the customer can log in and 
download the latest packages. 

Contact Detail 

For addressing any residual questions or concerns post-migration, please reach out via email at 
sakthimani.p@verifone.com. 

 

 

 

mailto:sakthimani.p@verifone.com


 Migration Guide Girgit 

    42 
 © Verifone Inc. All rights reserved. 

12. Troubleshooting AIDL Connection   
If there is a failure to establish an AIDL connection, then this can result in the application not functioning 
as expected due to the inability to communicate properly with the necessary services. 

To resolve this issue, perform a restart of the terminal. Restarting the terminal can reset any underlying 
processes or configurations that may be hindering the AIDL connection, allowing it to re-establish 
successfully. 

 

 

 

 

 

 

 

 

 



 

 

 

Verifone 

University Drive 
Coral Springs, 

FL 33065, USA 
Fax: 4545 233 

Phone: 001 454 2333 

 
www.verifone.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Thank you! 

We are the payments architects who  
truly understand commerce. 

As payment architects we shape ecosystems for online and 
in-person commerce experiences, including all the tools you 
need… from gateways and acquiring to fraud management, 
tokenization and reporting. 

As commerce experts, we are here for you and your business. 
With our payment devices, our systems & solutions and our 
support. Everywhere. Anytime. So that your customers feel 
enabled, recognized and well taken care of, even beyond their 
expectations. 

Verifone. Creating omni-commerce solutions that simply 
shape powerful customer experiences. 


