

www.verifone.com

Girgit
Programmers Guide

 Programmers Guide Girgit

 2
 © Verifone Inc. All rights reserved.

Girgit Programmers Guide
© 2025 Verifone, Inc.

All rights reserved. No part of the contents of this document may be reproduced or transmitted in any
form without the written permission of Verifone, Inc.

The information contained in this document is subject to change without notice. Although Verifone has
attempted to ensure the accuracy of the contents of this document, this document may include errors or
omissions. The examples and sample programs are for illustration only and may not be suited for your
purpose. You should verify the applicability of any example or sample program before placing the
software into productive use. This document, including without limitation the examples and software
programs, is supplied “As-Is.”

Verifone and the Verifone logo are registered trademarks of Verifone. Other brand names or trademarks
associated with Verifone’s products and services are trademarks of Verifone, Inc.

All other brand names and trademarks appearing in this manual are the property of their respective
holders.

Comments? Please e-mail all comments on this document to your local Verifone Support Team.

Verifone, Inc

1-800-Verifone

www.verifone.com

http://www.verifone.com/

 Programmers Guide Girgit

 3
 © Verifone Inc. All rights reserved.

Content

Preface 6

Introduction 6

Audience 6

Definitions and Abbreviations 6

Related Documentation 8

Revision History 8

1. Solution Overview 9

1.1 Installation of Girgit Service Application 10

1.1.1 Prerequisites 10

1.1.2 Installation Process- Side Loading 11

1.1.3 Supporting Files to be Installed 24

2. AIDL 26

2.1 AIDL: System Service 26

2.1.1 INetworkManager 26

2.1.2 IAppDeleteObserver 44

2.1.3 IAppInstallObserver 48

2.1.4 ISystemManager 52

2.1.5 ISettingsManager 64

2.2 AIDL: Device Service 73

2.2.1 CheckCardListener 73

2.2.2 IBeeper 78

2.2.3 ScannerListener 80

2.2.4 PrinterListener 83

 Programmers Guide Girgit

 4
 © Verifone Inc. All rights reserved.

2.2.5 PinInputListener 85

2.2.6 PBOCHandler 89

2.2.7 OnlineResultHandler 101

2.2.8 EMVHandler 104

2.2.9 IDeviceInfo 118

2.2.10 IEMV 142

2.2.11 ISmartCardReader 170

2.2.12 IScanner 175

2.2.13 IPrinter 178

2.2.14 IPinpad 194

2.2.15 IPBOC 241

2.2.16 IInsertCardReader 266

2.2.17 IDeviceService 270

2.2.18 ISystemService 286

2.2.19 IFFBase 287

2.3 Constant Definitions 289

2.3.1 BarcodeFormat 289

2.3.2 ConstCheckCardListener 293

2.3.3 ConstILed 295

2.3.4 ConstIPBOC 296

2.3.5 ConstIPinpad 313

2.3.6 ConstIPrinter 323

2.3.7 ConstOnlineResultHandler 335

2.3.8 ConstPBOCHandler 340

2.3.9 CTLSKernelID 348

3. Logging 351

Appendix A: Supporting Classes 354

 Programmers Guide Girgit

 5
 © Verifone Inc. All rights reserved.

1. BLKData 354

2. CandidateAppInfo 356

3. DRLData 366

4. IExternalSerialPort 369

5. ILed 377

6. IMagCardReader 380

7. UPCardListener 382

8. MagCardListener 385

9. RFSearchListener 388

10. TusnData 390

11. SerialDataControl 395

12. ISerialPort 398

13. IUsbSerialPort 404

14. IRFCardReader 407

15. PinKeyCoorInfo 421

16. PinpadKeyType 425

17. QrCodeContent 427

 Programmers Guide Girgit

 6
 © Verifone Inc. All rights reserved.

Preface

Introduction
This document provides a detailed and comprehensive information on packages and APIs used for
integration of Girgit Service Application on Neo devices.

The document will be revised and updated whenever new functionality is developed in a new version of
the application.

Audience
This guide is aimed at Integrators and POS Developers team who writes third party application on Neo
devices.

Definitions and Abbreviations
The following terms are used in this document:

Abbreviation Definition

AES Advanced Encryption Standard

AIDL Android Interface Definition Language

AID Application Identifier

APDU Application Protocol Data Unit

APN Access Point Name

API Application Programming Interface

APID Application Priority Indicator

APNs Access Point Names

ARQC Authorization Request Cryptogram

 Programmers Guide Girgit

 7
 © Verifone Inc. All rights reserved.

ATR Answer to Reset

CBC Cipher Block Chaining

CTLS Contactless

CT Country Code Index

CVM Cardholder Verification Method

DES Data Encryption Standard

ECB Electronic Codebook

EMV Europay, MasterCard, and Visa

EvDo Evolution-Data Optimized

ICCID Integrated Circuit Card Identifier

IMSI International Mobile Subscriber Identity

initVec initialization Vector

IPC Inter-Process Communication

MMS Multimedia Messaging Service

OpenSDI Open Smartcard Development Interface

PAN Primary Account Number

PCI Payment Card Industry

POS Point of Sale

TC Transaction Certificate

TDK Track Data Key

TEK Transaction Encryption Key

TLV Tag-Length-Value

 Programmers Guide Girgit

 8
 © Verifone Inc. All rights reserved.

TTF True Type Font

QR code Quick Response code

SDI Secure Device Interface

SDK Software Development Kit

SIM Subscriber Identity Module

UP Universal Payment

Related Documentation
To learn more about Girgit and the migration to Neo devices, refer to the following set of documents:

• Girgit Migration Guide
• Android 13 Migration for the older applications

(https://developer.android.com/about/versions/13/behavior-changes-13)

Revision History
Date Document Version Number Girgit Compatibility Version Description

17-02-2025 1.0.0 1.0.0.4 First Release

https://developer.android.com/about/versions/13/behavior-changes-13

 Programmers Guide Girgit

 9
 © Verifone Inc. All rights reserved.

1. Solution Overview
Girgit is a Middleware Software Development Kit (SDK) developed to enable the migration of applications
from Verifone X990 devices to Verifone Neo devices. By abstracting Secure Device Interface (SDI) API
calls and substituting them with VFI service API calls (X990-SDK), Girgit ensures a smooth transition with
minimal disruption.

The word "Girgit" is derived from Hindi, which means "chameleon" in English. Chameleons are well-known
for their ability to change their skin color to blend into different environments. This ability to adapt and
change subtly, while fundamentally remaining the same organism, mirrors this solution’s goal of adapting
applications to new environments with only slight modifications. In a broader cultural and linguistic
context, using the name Girgit symbolizes the idea of transformation and seamless adaptation.

Girgit uses a Replatform and Device Update migration strategy, with focus on seamless application
compatibility and enhanced performance on Neo devices. The transition process is structured into four
distinct phases:

1. Updating application interface and configurations
2. Updating Android Interface Definition Language (AIDL) components
3. Upgrading Android OS version
4. Implementing package and API changes for structural compatibility

 Programmers Guide Girgit

 10
 © Verifone Inc. All rights reserved.

Figure 1: High-level architecture diagram

1.1 Installation of Girgit Service Application

1.1.1 Prerequisites

Ensure that the below applications are installed for successful migration:

1) Girgit
2) GirgitSystemService

These applications contain the necessary frameworks and additional AIDL interfaces (included under
AIDL.zip file) to support the migration.

Both applications are integral components of the default Girgit package that contains two key services
for maintaining functionality and performance:

• Girgit Device Service: This service is responsible for managing all Europay, MasterCard, and Visa
(EMV) transactions, ensuring secure and efficient payment processing.

o Package name: com.vfi.smartpos.deviceservice.

 Programmers Guide Girgit

 11
 © Verifone Inc. All rights reserved.

• Girgit System Service: This service handles all system configurations, maintaining optimal device
operations and settings during and after migration.

o Package name: com.vfi.smartpos.system_service

NOTE
Girgit is compatible with Android OS version 13 and above but does not
support any earlier versions.

1.1.2 Installation Process- Side Loading

The installation of Girgit packages is done via side loading. Android Side Loader enables the direct
loading and updating of Verifone Android devices from a USB stick that is connected to a host PC.

1.1.2.1 Supported Side Loadable Packages

APK File

• The android applications can be installed in the APK format. Make sure that the APK file is Verifone
signed, or sponsor signed.

ZIP File

• A single ZIP, flash.zip is provided to perform a bulk installation of multiple components. Note that
the security checking is done on the individual files within the flash.zip, and not on the zip file itself.
There is no manifest used in the flash.zip. All files are expected to be at the top-level directory of
the flash.zip. The type of installation method is determined by the file extension.

Order Filename/Extension File Description Comment

1 sponsor.tgz Initial sponsor package Install this file first if the device has not been signed by a
sponsor, so that any other packages can be installed after
the device has been signed by a sponsor.

 Programmers Guide Girgit

 12
 © Verifone Inc. All rights reserved.

NOTE

• Verifone will issue a
customer-specific signing
certificate to the sponsor.

• Only one sponsor will be
allowed per device.

• Once a device is bound to a
sponsor, only those apps that
are signed by that specific
sponsor can be installed.

• The sponsor.tgz is provided
by Verifone.

2 ...tgz, ...tar, ...tar.gz Secure components
package

This package is used to update the secure components
for products that do not run on Engage devices. There
can be maximum of one package of this type per flash.zip
file.

The package holds the following items:

• SDI configuration files: (whitelist.json,
sensitive_tags.json, card_ranges.json)

• SDI security configuration (sccfg.json)
• SDI static EMV configuration
• VCL settings file

NOTE
This package is for non-engage
secure processors only. This
package can also be used to
sponsor-sign a new terminal, as the
package includes a customer-
specific signing certificate to the
sponsor

Customers can create the specific signing certificate from
the Verifone Development portal. Nevertheless, this
feature is being developed, and you should contact the
Verifone Technical support team to obtain the signing
certificate.

3 …apk Android package There can be multiple .apk files in a flash.zip file.

 Programmers Guide Girgit

 13
 © Verifone Inc. All rights reserved.

The Verifone Android platform will only support APKv2
signing scheme.

Customers can use the Android default signing for
Application Development units (APP-DEV).

For Production units (PROD), customer APK signing is
done on the VeriShield File Signing (VFS) Service at
https://sign.verifone.com.

4 …zip CP Package This package requires a manifest file (.mft) that indicates
whether applications are to be installed or uninstalled.

Installed applications are expected to be within this zip
file and in the apk format.

There can be maximum of one package of this type per
flash.zip file.

Android Commerce Platform packages are APK files.

Engage-CP.zip

• cpapp1.apk
• cpapp2.apk
• cp-pkg.mft

Engage Commerce Platform packages are ZIP files.

Engage-CP.zip

• cpdemo1-inst.zip
• cpdemo2-inst.zip
• cp-pkg.mft

Manifest file must have application->type set to
“CP_ANDROID” or “CP_ENGAGE” to identify the platform.

For Android application->purpose is indicating an action
to be taken: “CP_INSTALL” or “CP_UNINSTALL”.

5 ...json VRKv2 There can be multiple files in a flash.zip file.

VRK key loading packages are encrypted with a VRKv2
warrantied key that is pre-installed on the system.

Verifone creates these packages upon customer request.

 Programmers Guide Girgit

 14
 © Verifone Inc. All rights reserved.

The VRKv2 key can currently only be loaded on Trinity and
Neo terminals.

6 tgz, ...tar, ...tar.gz Engage Only secure
installer package

This package is used to update the secure components
on products running on Engage terminals.

These packages can also be used to sponsor sign a new
terminal.

There can be maximum of one package of this type per
flash.zip file.

7 ...zip Android OTA This file is used to update the Android operating system
software.

There can be maximum of one package of this type per
flash.zip file.

This file is identified by the contained meta-data created
by Android tools.

The Android OTA files are system signed and provided by
Verifone.

8 Parameters.zip Android settings There can be only one parameter file called

“parameters.zip” per flash.zip file and it needs to be in

top-level of flash.zip.

1.1.2.2 Required Setup and Tools

USB Stick

• FAT32 formatted stick with 4GB.

Packaging Tools - Creating loadable ZIP files

• Any standard tool can be used to create the zip file which will be used as the flash.zip.

 Programmers Guide Girgit

 15
 © Verifone Inc. All rights reserved.

1.1.2.3 Installation via USB using Sysmode

At any time through Sysmode, the Android Side Loader app can be launched by going to “Device” ->
“Load update package”. This method can also be used at the time of development purpose,
troubleshooting the device, or any maintenance purpose.

Step Detail Screen

1 From Sysmode, select Supervisor.

 Programmers Guide Girgit

 16
 © Verifone Inc. All rights reserved.

2 From the main screen, select Device.

3 Select Load Update Package.

 Programmers Guide Girgit

 17
 © Verifone Inc. All rights reserved.

4 The application will present the following options:
1. Choose file
2. Open network port

Choose File

Upon selecting this option, a file browser will be launched, enabling users to select a file from a USB
drive. The system restricts file selection to those with APK and ZIP extensions for installation purposes.
Users may insert the USB drive at any time; however, it is essential to allow sufficient time for the Android
operating system to recognize and process the device. The USB drive's connection status can be
checked via the status bar.

 Programmers Guide Girgit

 18
 © Verifone Inc. All rights reserved.

Step Detail Screen

1 Check the status of USB connection from the status bar.

2 Once the device is ready, select the file.

Note that the file can have any name if it ends in .zip, and the file
can be located in any folder as the user can use the UI to navigate
and select the file to be used.

Select the menu icon to change the browsing location.

 Programmers Guide Girgit

 19
 © Verifone Inc. All rights reserved.

3 Select the USB drive.

4 Select the ZIP file to be used.

 Programmers Guide Girgit

 20
 © Verifone Inc. All rights reserved.

5 Upon selection, the file installation begins.

Open Network Port

Selecting this option will open the netloader port to allow an IP based file download. The port will remain
open until closed by the user or the device is power cycled.

 Programmers Guide Girgit

 21
 © Verifone Inc. All rights reserved.

Step Detail Screen

1 Select Open network port before connecting with an
external tool.

2 This will indicate the connection is open. There is no need to stay
on this screen to keep the port open. Selecting this again will
close the port.

 Programmers Guide Girgit

 22
 © Verifone Inc. All rights reserved.

3 While receiving a file and on this screen, the status of the
download will be displayed here.

1.1.2.4 Connecting to System Service and Device Service

After the package installation, it is necessary to bind both the system service and device service, as
shown in the code snippets below.

Binding the System Service:

public boolean bindSystemService(Context context) {

 final boolean[] isConnected = {false};

 Executors.newSingleThreadExecutor().execute(() -> {

 /**

 * Create a new connection and keep the handler in global scope.

 * */

 ServiceConnection serviceConnection = new ServiceConnection() {

 @Override

 public void onServiceConnected(ComponentName componentName, IBinder iBinder)

{

 setHandler(ISystemManager.Stub.asInterface(iBinder));

 DeviceServiceManager.getInstance().bindPosService(context);

 Toast.backgroundToast(context, "System onServiceConnected");

 }

 @Override

 public void onServiceDisconnected(ComponentName componentName) {

 Toast.backgroundToast(context, "onServiceDisconnected");

 Programmers Guide Girgit

 23
 © Verifone Inc. All rights reserved.

 Log.d(TAG, "onServiceDisconnected: Disconnected");

 MainActivity.disconnected();

 setHandler(null);

 context.bindService(new

Intent().setAction(POS_SERVICE_ACTION).setPackage(POS_SERVICE_PACKAGE),

 this, Context.BIND_AUTO_CREATE);

 }

 };

 boolean res = context.bindService(

 new Intent()

 .setAction(POS_SERVICE_ACTION)

 .setPackage(POS_SERVICE_PACKAGE),

 serviceConnection,

 Context.BIND_AUTO_CREATE);

 if (!res) {

 Log.i(TAG, "System Service Failed");

 Toast.backgroundToast(context, "System Service Failed");

 getInstance().isConnected = false;

 } else {

 Log.i(TAG, "System Service Connected");

 Toast.backgroundToast(context, "System Service Connected");

 getInstance().isConnected = true;

 }

 });

 return getInstance().isConnected;

 }

Binding the Device Service:

public boolean bindPosService(Context context) {

 Executors.newSingleThreadExecutor().execute(() -> {

 /**

 * Create a new connection and keep the handler in global scope.

 * */

 ServiceConnection serviceConnection = new ServiceConnection() {

 @Override

 public void onServiceConnected(ComponentName componentName, IBinder iBinder)

{

 setHandler(IDeviceService.Stub.asInterface(iBinder));

 Toast.backgroundToast(context, "device onServiceConnected");

 }

 @Override

 public void onServiceDisconnected(ComponentName componentName) {

 Toast.backgroundToast(context, "onServiceDisconnected");

 Log.d(TAG, "onServiceDisconnected: Disconnected");

 MainActivity.disconnected();

 Programmers Guide Girgit

 24
 © Verifone Inc. All rights reserved.

 setHandler(null);

 context.bindService(new

Intent().setAction(POS_SERVICE_ACTION).setPackage(POS_SERVICE_PACKAGE),

 this, Context.BIND_AUTO_CREATE);

 }

 };

 boolean res = context.bindService(

 new Intent()

 .setAction(POS_SERVICE_ACTION)

 .setPackage(POS_SERVICE_PACKAGE),

 serviceConnection,

 Context.BIND_AUTO_CREATE);

 if (!res) {

 Log.i(TAG, "Device Service Failed");

 Toast.backgroundToast(context, "Device Service FAILED");

 getInstance().isConnected = false;

 } else {

 Log.i(TAG, "Device Service Connected");

 Toast.backgroundToast(context, "Device Service Connected");

 getInstance().isConnected = true;

 Intent intent = new Intent(context, SubMainActivity.class);

 // Start the SubMenu activity

 context.startActivity(intent);

 }

 });

 return getInstance().isConnected;

 }

1.1.3 Supporting Files to be Installed

Apart from the default package, install the following files to ensure secure and proper handling of
sensitive data:

1. sccfg.json: The sccfg.json file is essential for securely handling sensitive data operations. It
contains the configuration for the ADK-Sec security service, which the SDI Server uses to perform
secure operations. Proper configuration of this file is crucial for the successful management of all
tasks involving sensitive data.

2. GirgitJ_log.conf and GirgitN_log.conf: These are the configuration files used for logging
purposes to retrieve Girgit application logs.

3. whitelist.json: The `whitelist.json` file is not included in the default configuration provided with the
SDI base and SDI config packages. However, if the user application requires it, it can be installed
through a user config package. This file whitelists the set of cards that will block sensitive

 Programmers Guide Girgit

 25
 © Verifone Inc. All rights reserved.

payment-related data, such as the Primary Account Number (PAN). By default, the file contains
the values [0,1,2,3,4,5,6,7,8,9].

NOTE
The above files should be as .zip files (flash.zip). Refer to Section 1.2.2.3
on how to install these files.

 Programmers Guide Girgit

 26
 © Verifone Inc. All rights reserved.

2. AIDL
AIDL is a powerful tool to facilitate inter-process communication (IPC). It allows different Android
components, potentially running in separate processes, to interact and share data in a seamless and
efficient manner. This is particularly useful for applications that need to perform background tasks or
require services from other applications.

Key features of AIDL:

• Inter-process Communication: AIDL enables communication between different processes in
Android, ensuring that data can be shared, and methods can be invoked across process
boundaries.

• Type Support: AIDL supports a variety of data types, including primitive types, Strings,
CharSequences, List, Map, and Parcelable objects, allowing for flexible and complex data
structures to be communicated.

• Automatic Code Generation: When defining an AIDL interface, the Android build tools to
automatically generate the necessary code to handle the IPC, minimizing the boilerplate code
developers need to write.

This chapter describes the methods offered by Girgit service application.

2.1 AIDL: System Service
The system service AIDL interfaces provide a structured and efficient way to manage various system-
level operations on Neo devices. These interfaces define a set of methods to perform critical system
functions such as installing and uninstalling applications, managing device settings, and accessing
network management functionalities.

2.1.1 INetworkManager

Package: com.vfi.smartpos.system_service.aidl.networks.INetworkManager

 Programmers Guide Girgit

 27
 © Verifone Inc. All rights reserved.

Overview:

This interface provides a set of methods to manage network-related operations on Neo payment
devices. It includes functionalities to configure network types, enable/disable Wi-Fi, and Airplane mode,
manage mobile data settings, and handle Access Point Names (APNs).

NOTE
The following methods are not supported at the device level in Android
13. These functionalities should instead be implemented at the
application level.

• isMultiNetwork()

• setMultiNetwork(boolean enable)

• getMultiNetworkPrefer()

• setMultiNetworkPrefer(String prefer)

Public Member Functions:

Modifier and Type Method

void setNetworkType (int mode)

int getNetworkType ()

void enableWifi (boolean state)

void enableAirplayMode (boolean state)

int setAPN (in Bundle infos)

void enableMobileData (boolean state)

Bundle getSelectedApnInfo ()

int selectMobileDataOnSlot (int slotIdx)

boolean isMultiNetwork ()

 Programmers Guide Girgit

 28
 © Verifone Inc. All rights reserved.

void setMultiNetwork (boolean enable)

String getMultiNetworkPrefer ()

boolean setMultiNetworkPrefer (String prefer)

void setEthernetStaticIp (in Bundle bundle)

void setWifiStaticIp (in Bundle bundle)

void setMobilePreferredNetworkType (String type)

String getMobilePreferredNetworkType ()

Member Function Documentation:

setNetworkType()

This method sets the network type to the specified mode. It is used to configure the
network settings of the device, enabling the user to switch between different network
types as required.

Prototype

void

com.vfi.smartpos.system_service.aidl.networks.INetworkManager.setNetworkType(int

mode)

Parameter

mode An integer value that indicates the required network mode to be set.

 7 = Global This mode represents a global (or auto) mode
where the device can switch between multiple
network types depending on availability. This
supports both GSM and CDMA networks globally.

 Programmers Guide Girgit

 29
 © Verifone Inc. All rights reserved.

6 = EvDo only This mode selects the EvDo (Evolution-Data
Optimized) network type, which is a high-speed
data technology used with CDMA networks,
specifically in the 3G context.

5 = CDMA
without EvDo

This mode forces the device to connect only to a
CDMA network without using EvDo for data
services. Typically, this refers to basic voice and
limited data on older CDMA networks.

4 = CDMA /
EvDo auto

This mode allows the device to automatically
switch between CDMA for voice services and
EvDo for high-speed data. It's a common mode
for devices that need to support both voice and
3G data on CDMA networks.

3 = GSM /
WCDMA auto

This mode allows the device to automatically
switch between GSM (2G) for voice services and
WCDMA (3G) for data, depending on availability.

2 = WCDMA
only

This mode forces the device to connect to
WCDMA networks (3G only), disabling GSM or
any other network type.

1 = GSM only This mode forces the device to use GSM
networks only, typically for 2G voice and data
services.

0 = GSM /
WCDMA
preferred

This is a common mode that prefers GSM for
voice and WCDMA for data. If neither is available,
the device might fall back to another supported
network type (e.g., CDMA, if applicable).

Return Values

void

 Programmers Guide Girgit

 30
 © Verifone Inc. All rights reserved.

getNetworkType()

This method retrieves the current network type. It provides the configuration of the current
network settings on the device.

Prototype

int

com.vfi.smartpos.system_service.aidl.networks.INetworkManager.getNetworkType()

Parameter

None.

Return Values

An integer representing the current network type below:

7 = Global This mode represents a global (or auto) mode
where the device can switch between multiple
network types depending on availability. This
likely supports both GSM and CDMA networks
globally.

6 = EvDo only This mode selects the EvDo (Evolution-Data
Optimized) network type, which is a high-speed
data technology used with CDMA networks,
specifically in the 3G context.

5 = CDMA without EvDo This mode forces the device to connect only to a
CDMA network without using EvDo for data
services. Typically, this could refer to basic voice
and limited data on older CDMA networks.

 Programmers Guide Girgit

 31
 © Verifone Inc. All rights reserved.

4 = CDMA / EvDo auto This mode allows the device to automatically
switch between CDMA for voice services and
EvDo for high-speed data. It's a common mode
for devices that need to support both voice and
3G data on CDMA networks.

3 = GSM / WCDMA auto This mode allows the device to automatically
switch between GSM (2G) for voice services and
WCDMA (3G) for data, depending on availability.

2 = WCDMA only This mode forces the device to connect to
WCDMA networks (3G only), disabling GSM or
any other network type.

1 = GSM only This mode forces the device to use GSM
networks only, typically for 2G voice and data
services.

0 = GSM / WCDMA
preferred

This is a common mode that prefers GSM for
voice and WCDMA for data. If neither is available,
the device might fall back to another supported
network type (e.g., CDMA, if applicable).

enableWifi()

This method enables or disables Wi-Fi based on the provided state.

Prototype

void com.vfi.smartpos.system_service.aidl.networks.INetworkManager.enableWifi

(boolean state)

Parameter

 Programmers Guide Girgit

 32
 © Verifone Inc. All rights reserved.

state A Boolean value that indicates and controls the current Wi-Fi state of the
device.

 true: Enables Wi-Fi functionality.

false: Disable Wi-Fi functionality.

Return Values

void

enableAirplayMode()

This method enables or disables Airplane mode based on the provided state.

NOTE
Enabling Airplane mode will deactivate all wireless
communications, while disabling it will restore
connectivity.

Prototype

void com.vfi.smartpos.system_service.aidl.networks.INetworkManager.

enableAirplayMode(boolean state)

Parameter

state A Boolean value that indicates and controls the Airplane mode state of the
device.

 true: Enables Airplane mode.

false: Disables Airplane mode.

Return Values

void

 Programmers Guide Girgit

 33
 © Verifone Inc. All rights reserved.

setAPN()

This method sets the APN settings based on the provided configuration details.

Prototype

int com.vfi.smartpos.system_service.aidl.networks.INetworkManager.setAPN(in

Bundle infos)

Code Snippet

Bundle infos = new Bundle();

 infos.putString("name", "test01");

 infos.putString("apn", "test01");

 infos.putString("authtype", "-1");

 infos.putString("numeric", "46002");

Parameter

infos A Bundle containing configuration details necessary for APN setup.

 Key Value Description

name test01 The name of the APN.

apn test01 The actual APN string that the device will
use to connect to the mobile network.

authtype -1 Authentication type, usually -1 for none, 0
for PAP, 1 for CHAP, etc.

numeric 46002 The mobile network's numeric identifier
(MCC + MNC). In this case, 460 is the
Mobile Country Code (MCC) and 02 is the
Mobile Network Code (MNC)

mcc 460 MCC - part of the identifier for the
network.

 Programmers Guide Girgit

 34
 © Verifone Inc. All rights reserved.

mnc 02 MNC - part of the identifier for the
network.

proxy - Proxy server address, if used (often left
empty if no proxy is required).

port - The port number for the proxy (if used).

mmsproxy - The proxy server for Multimedia
Messaging Service (MMS).

mmsport - The port number for the MMS proxy.

user - Username for authentication, if needed.

server - Server address (typically left empty).

password - Password for authentication (if needed).

mmsc - Multimedia Messaging Service Center
(MMSC) URL.

current 1 Indicator if this is the current APN to be
used (1 means current).

carrier_enabled 1 Carrier's status (1 for enabled, 0 for
disabled).

protocol IP The protocol used for IP (e.g., IP, IPv6).

roaming_protocol IP The protocol used when roaming (e.g., IP,
IPv6).

bearer 0 Bearer type (e.g., 0 for unspecified, 1 for
GPRS, etc.).

max_conns 0 Maximum number of connections (0 for
unlimited).

max_conns_time 0 Time in seconds before the number of
connections is restricted (0 for no limit).

 Programmers Guide Girgit

 35
 © Verifone Inc. All rights reserved.

modem_cognitive - Modem cognitive settings (may not be
used in all cases).

localized_name - Localized name for the APN (useful for
specific regions).

mvno_match_data - Mobile Virtual Network Operator (MVNO)
matching data.

mvno_type - Type of MVNO (e.g., SPN, IMSI, etc.).

profile_id 0 Profile ID for this APN configuration.

read_only 0 Whether the APN configuration is read-
only (0 for no, 1 for yes).

sub_id 1 Subscription ID for the APN.

type Type of the APN (e.g., default, mms, supl).

SLOT 1 SIM card slot number (1 for the first slot, 2
for the second, etc.).

fixed_numeric 46002 The fixed numeric identifier for the carrier.

Return Values

An integer indicating the result (success or failure) of the APN configuration.

0: The operation was successful.

Any negative integer: The operation failed.

 Programmers Guide Girgit

 36
 © Verifone Inc. All rights reserved.

enableMobileData()

This method enables or disables mobile data connectivity based on the provided state.
When enabled, mobile data is activated, allowing for data transmission over the mobile
network.

Prototype

void com.vfi.smartpos.system_service.aidl.networks.INetworkManager.

enableMobileData(boolean state)

Parameter

state A Boolean value that indicates and controls the mobile data state on the
device.

 true: Enables mobile data.

false: Disables mobile data.

Return Values

void

getSelectedApnInfo()

This method retrieves information about the selected APN configuration on the device,
such as APN name, type, username, password etc.

Prototype

bundle com.vfi.smartpos.system_service.aidl.networks.INetworkManager.

getSelectedApnInfo()

Parameter

None.

 Programmers Guide Girgit

 37
 © Verifone Inc. All rights reserved.

Return Values

A Bundle containing details of the selected APN. Possible values:

 Key Value Description

name test01 The name of the APN.

apn test01 The actual APN string that the device will
use to connect to the mobile network.

authtype -1 Authentication type, usually -1 for none, 0
for PAP, 1 for CHAP, etc.

numeric 46002 The mobile network's numeric identifier
(MCC + MNC). In this case, 460 is the
Mobile Country Code (MCC) and 02 is the
Mobile Network Code (MNC)

mcc 460 MCC - part of the identifier for the
network.

mnc 02 MNC - part of the identifier for the
network.

proxy - Proxy server address, if used (often left
empty if no proxy is required).

port - The port number for the proxy (if used).

mmsproxy - The proxy server for Multimedia
Messaging Service (MMS).

mmsport - The port number for the MMS proxy.

user - Username for authentication, if needed.

server - Server address (typically left empty).

password - Password for authentication (if needed).

 Programmers Guide Girgit

 38
 © Verifone Inc. All rights reserved.

mmsc - Multimedia Messaging Service Center
(MMSC) URL.

current 1 Indicator if this is the current APN to be
used (1 means current).

carrier_enabled 1 Carrier's status (1 for enabled, 0 for
disabled).

protocol IP The protocol used for IP (e.g., IP, IPv6).

roaming_protocol IP The protocol used when roaming (e.g., IP,
IPv6).

bearer 0 Bearer type (e.g., 0 for unspecified, 1 for
GPRS, etc.).

max_conns 0 Maximum number of connections (0 for
unlimited).

max_conns_time 0 Time in seconds before the number of
connections is restricted (0 for no limit).

modem_cognitive - Modem cognitive settings (may not be
used in all cases).

localized_name - Localized name for the APN (useful for
specific regions).

mvno_match_data - Mobile Virtual Network Operator (MVNO)
matching data.

mvno_type - Type of MVNO (e.g., SPN, IMSI, etc.).

profile_id 0 Profile ID for this APN configuration.

read_only 0 Whether the APN configuration is read-
only (0 for no, 1 for yes).

sub_id 1 Subscription ID for the APN.

 Programmers Guide Girgit

 39
 © Verifone Inc. All rights reserved.

type Type of the APN (e.g., default, mms, supl).

SLOT 1 SIM card slot number (1 for the first slot, 2
for the second, etc.).

fixed_numeric 46002 The fixed numeric identifier for the carrier.

selectMobileDataOnSlot()

This method allows the selection of SIM slot to be used for mobile data connectivity by
providing the corresponding slot index (either 1 or 2).

Prototype

int com.vfi.smartpos.system_service.aidl.networks.INetworkManager.

selectMobileDataOnSlot (int slotIdx)

Parameter

slotldx An integer value that indicates the SIM slot for mobile data usage.
Acceptable values are 1 or 2.

 1: Slot 1.

2: Slot 2.

Return Values

An integer indicating the result (success or failure) of the operation.

0: The operation was successful.

Any negative integer: The operation failed.

 Programmers Guide Girgit

 40
 © Verifone Inc. All rights reserved.

isMultiNetwork()

This method is used to check whether multi-network support is enabled on the device.

Prototype

boolean

com.vfi.smartpos.system_service.aidl.networks.INetworkManager.isMultiNetwork ()

Parameter

None.

Return Values

A Boolean value:

true: Multi-network support is enabled.

false: Multi-network support is disabled.

 Programmers Guide Girgit

 41
 © Verifone Inc. All rights reserved.

setEthernetStaticIp()

This method configures a static IP for Ethernet or switches to DHCP.

Prototype

void

com.vfi.smartpos.system_service.aidl.networks.INetworkManager.setEthernetStaticI

p(in Bundle bundle)

Parameter

bundle A Bundle object that contains the configuration details as shown
below:

 STATIC_IP: The static IP address for the
Ethernet interface. (e.g.192.168.1.1).

STATIC_GATEWAY: The default gateway for the static IP
(e.g. 192.168.1.1).

STATIC_NETMASK: The subnet mask for the IP
configuration (e.g. 255.255.255.0).

STATIC_DNS1: The primary DNS server (e.g.
192.168.1.1).

STATIC_DNS2: The secondary DNS server
(optional) (e.g. 192.168.1.1).

Return Values

void

 Programmers Guide Girgit

 42
 © Verifone Inc. All rights reserved.

setWifiStaticIp()

This method allows to configure a static IP address or switch the Wi-Fi connection to DHCP
mode.

Prototype

void

com.vfi.smartpos.system_service.aidl.networks.INetworkManager.setWifiStaticIp(in

Bundle bundle)

Parameter

bundle A Bundle object that contains the configuration data including IP
address, gateway, netmask, DNS servers, and a flag to switch to
DHCP:

 STATIC_IP: The static IP address for the Wi-Fi
interface. Setting this to "0.0.0.0" or
"0" will switch to DHCP mode
(e.g.192.168.1.1).

STATIC_GATEWAY: The default gateway for the static IP
(e.g. 192.168.1.1).

STATIC_NETMASK: The subnet mask for the IP
configuration (e.g. 255.255.255.0).

STATIC_DNS1: The primary DNS server (e.g.
192.168.1.1).

STATIC_DNS2: The secondary DNS server (optional)
(e.g. 192.168.1.1).

Return Values

void

 Programmers Guide Girgit

 43
 © Verifone Inc. All rights reserved.

setMobilePreferredNetworkType()

This method enables the configuration of the preferred mobile network type on the current
SIM card.

Prototype

void

com.vfi.smartpos.system_service.aidl.networks.INetworkManager.setMobilePreferred

NetworkType(String type)

Parameter

type A string that specifies the preferred mobile network type. It can take
the following values:

 2G: The device will only use 2G networks.

3G: The device can use both 2G and 3G networks.

4G: The device can use 2G, 3G, and 4G networks.

Return Values

void

 Programmers Guide Girgit

 44
 © Verifone Inc. All rights reserved.

getMobilePreferredNetworkType()

This method retrieves the preferred mobile network type for the current SIM card.

Prototype

String

com.vfi.smartpos.system_service.aidl.networks.INetworkManager.getMobilePreferred

NetworkType()

Parameter

None.

Return Values

The method returns the following values:

2G: If the device is set to use only 2G networks, this will be returned.

3G: If the device is set to use both 2G and 3G networks, this will be returned.

4G: If the device is set to use 2G, 3G, and 4G networks, this will be returned.

Null: If there is a failure to retrieve the current network type, it will return null.

2.1.2 IAppDeleteObserver

Package: com.vfi.smartpos.system_service.aidl.IAppDeleteObserver

Overview:

This interface provides a callback mechanism that enables monitoring of the application deletion process
on the device. It includes a single method, onDeleteFinished(), which is invoked upon the completion of
an application deletion operation.

 Programmers Guide Girgit

 45
 © Verifone Inc. All rights reserved.

Public Member Functions:

Modifier and Type Method

void onDeleteFinished (String packageName, int returnCode)

Member Function Documentation:

onDeleteFinished()

This method is a callback function that is triggered upon the completion of an application
deletion. The method provides the package name of the deleted application and a return
code to indicate the success or failure of the operation.

Prototype

void

com.vfi.smartpos.system_service.aidl.IAppDeleteObserver.onDeleteFinished(String

packageName, int returnCode)

Parameters

packageName The package name of the application that was deleted.

returnCode An integer indicating the result of the deletion operation. This code
indicates whether the deletion was successful or if an error occurred.

 Error Code Value Description

 STATUS_SUCCESS 0 Package
installation (or
operation) was
a success.

STATUS_FAILURE 1 Package
installation (or
operation) was
a failure.

 Programmers Guide Girgit

 46
 © Verifone Inc. All rights reserved.

STATUS_FAILURE_LOW_BATTERY 2 The battery
level is too low
for an Android
or Engage
update.

STATUS_FAILURE_PACKAGE_NOT_A_ZIP_FILE 3 Package file
was not a zip
file as
expected.

STATUS_FAILURE_PACKAGE_ZIP_FILE_EMPTY 4 Package file
was an empty
zip file.

STATUS_FAILURE_UNRECOGNIZED_UPDATE_

FILE_NAME

5 A file inside the
package file
has an
unrecognized
name.

STATUS_FAILURE_TOO_MANY_UPDATE_FILES 6 The package
file contained
more than one
Android
update file.

STATUS_FAILURE_UPDATE_FILE_VERIFY 7 The Android
update file
failed
verification.

STATUS_FAILURE_UPDATE_FILE_APPLY 8 The update
failed to apply.

STATUS_PENDING 9 The update is
pending,
expect a
callback.

 Programmers Guide Girgit

 47
 © Verifone Inc. All rights reserved.

STATUS_SUCCESS_REBOOTING 10 The update is
pending,
expect a
callback.

STATUS_FAILURE_SERVICE_NOT_BOUND 11 The service is
not bound, no
action taken.

STATUS_FAILURE_IO 12 The service is
not bound, no
action taken.

STATUS_FAILURE_NO_INFO_FILE 13 There is no
info file
present.

STATUS_FAILURE_INVALID_FILE_TYPE 14 The service is
not bound, no
action taken.

STATUS_PKG_TRANSFERING 15 The package is
being
transferred.

STATUS_PKG_VERIFING 16 The package is
being verified.

STATUS_PKG_INSTALLING 17 The package is
being installed.

STATUS_EMPTY_INSTALL 18 Install actions
have been
ignored or
none have
occurred.

STATUS_BUSY 19 Install is
already in
progress.

 Programmers Guide Girgit

 48
 © Verifone Inc. All rights reserved.

STATUS_FAILURE_LOW_FLASH_MEMORY 20 Terminal
doesn't have
enough
storage space
to process the
request.

STATUS_UNKNOWN 21 The package
status is
unknown.

Return Values

void

2.1.3 IAppInstallObserver

Package: com.vfi.smartpos.system_service.aidl.IAppInstallObserver

Overview:

This interface provides a callback mechanism that enables monitoring of the application installation
process on the device. It defines a single method, onInstallFinished(), which is invoked when the
installation of an application has been completed.

Modifier and Type Method

void onInstallFinished (String packageName, int returnCode)

Member Function Documentation:

onInstallFinished()

This method is a callback function that is triggered upon the completion of an application
installation. The method provides the package name of the installed application and a
return code to indicate the success or failure of the operation.

 Programmers Guide Girgit

 49
 © Verifone Inc. All rights reserved.

Prototype

void

com.vfi.smartpos.system_service.aidl.IAppDeleteObserver.onInstallFinished(String

packageName, int returnCode)

Parameters

packageName The package name of the application that was installed.

returnCode An integer indicating the result of the installation operation. This code
indicates whether the installation was successful or if an error occurred.

 Error Code Value Description

STATUS_SUCCESS 0 Package
installation (or
operation) was
a success.

STATUS_FAILURE 1 Package
installation (or
operation) was
a failure.

STATUS_FAILURE_LOW_BATTERY 2 The battery
level is too low
for an Android
or Engage
update.

STATUS_FAILURE_PACKAGE_NOT_A_ZIP_FILE 3 Package file
was not a zip
file as
expected.

STATUS_FAILURE_PACKAGE_ZIP_FILE_EMPTY 4 Package file
was an empty
zip file.

 Programmers Guide Girgit

 50
 © Verifone Inc. All rights reserved.

STATUS_FAILURE_UNRECOGNIZED_UPDATE_

FILE_NAME

5 A file inside the
package file
has an
unrecognized
name.

STATUS_FAILURE_TOO_MANY_UPDATE_FILES 6 The package
file contained
more than one
Android
update file.

STATUS_FAILURE_UPDATE_FILE_VERIFY 7 The Android
update file
failed
verification.

STATUS_FAILURE_UPDATE_FILE_APPLY 8 The update
failed to apply.

STATUS_PENDING 9 The update is
pending,
expect a
callback.

STATUS_SUCCESS_REBOOTING 10 The update is
pending,
expect a
callback.

STATUS_FAILURE_SERVICE_NOT_BOUND 11 The service is
not bound, no
action taken.

STATUS_FAILURE_IO 12 The service is
not bound, no
action taken.

STATUS_FAILURE_NO_INFO_FILE 13 There is no info
file present.

 Programmers Guide Girgit

 51
 © Verifone Inc. All rights reserved.

STATUS_FAILURE_INVALID_FILE_TYPE 14 The service is
not bound, no
action taken.

STATUS_PKG_TRANSFERING 15 The package is
being
transferred.

STATUS_PKG_VERIFING 16 The package is
being verified.

STATUS_PKG_INSTALLING 17 The package is
being installed.

STATUS_EMPTY_INSTALL 18 Install actions
have been
ignored or
none have
occurred.

STATUS_BUSY 19 Install is
already in
progress.

STATUS_FAILURE_LOW_FLASH_MEMORY 20 Terminal
doesn't have
enough
storage space
to process the
request.

STATUS_UNKNOWN 21 The package
status is
unknown.

Return Values

void

 Programmers Guide Girgit

 52
 © Verifone Inc. All rights reserved.

2.1.4 ISystemManager

Package: com.vfi.smartpos.system_service.aidl.ISystemManager

Overview:

This interface provides a set of methods to manage system-level operations on the device, including
installing and uninstalling applications, controlling device settings, and accessing network management
functionalities.

Public Member Functions:

Modifier and Type Method

void installApp (String apkPath, IAppInstallObserver observer, String installerPackageName)

void uninstallApp (String packageName, IAppDeleteObserver observer)

void reboot ()

void isMaskHomeKey (boolean state)

void isMaskStatusBard (boolean state)

void updateROM (String zipPath)

INetworkManager getNetworkManager ()

void setLocationMode (int status)

boolean isAdbMode ()

boolean killApplication (String packageName)

boolean restartApplication (String packageName)

void initLogcat (int logcatBufferSize, int logcatBufferSizeSuffix, in Bundle bundle)

 Programmers Guide Girgit

 53
 © Verifone Inc. All rights reserved.

String getLogcat (String logcatFileName, int compressType)

Bundle getLaunchAppsInfo (long beginTime, long endTime)

ISettingsManager getSettingsManager ()

Bitmap takeCapture ()

void shutdownDevice ()

Member Function Documentation:

installApp()

This method installs an APK file onto the device by providing the necessary parameters,
including the APK's location and an observer for installation status callbacks.

Ensure that the apkPath is valid and accessible and that the installerPackageName
corresponds to a legitimate application package authorized to perform such actions on the
device.

Prototype

void com.vfi.smartpos.system_service.aidl.ISystemManager.installApp(String

apkPath, IAppInstallObserver observer, String installerPackageName)

Parameters

apkPath The absolute file path (URI) of the APK to be installed. This path
must point to a valid APK file.

observer A callback handler that allows the caller to receive updates on
the installation process, such as success or failure notifications.
Refer to IAppInstallObserver.

installerPackageName The package name of the installer APK.

 Programmers Guide Girgit

 54
 © Verifone Inc. All rights reserved.

Return Values

void

uninstallApp()

This method uninstalls an application from the device by accepting the package name of
the targeted application and an observer for tracking the uninstallation process.

Ensure that the provided packageName corresponds to an application currently installed on
the device.

Prototype

void com.vfi.smartpos.system_service.aidl.ISystemManager.uninstallApp(String

packageName, IAppDeleteObserver observer)

Parameters

packageName The unique package name of the application that is to be
uninstalled. This must correspond to an installed application on
the device.

observer A callback handler that receives notifications regarding the
status of the uninstallation process, including success or failure
events. Refer to IAppDeleteObserver.

Return Values

void

reboot()

This method initiates a reboot of the device.

 Programmers Guide Girgit

 55
 © Verifone Inc. All rights reserved.

Prototype

void com.vfi.smartpos.system_service.aidl.ISystemManager.reboot()

Parameter

None.

Return Values

void

isMaskHomeKey()

This method enables or disables the masking of the Home key on the device. It controls
the operational state of the Home key based on the application's requirements.

Prototype

void com.vfi.smartpos.system_service.aidl.ISystemManager.isMaskHomeKey(boolean

state)

Parameter

state A Boolean value that determines the action to be taken:

 true: Masks the Home key, preventing it from being
used.

false: Unmasks the Home key, allowing normal
functionality.

Return Values

void

 Programmers Guide Girgit

 56
 © Verifone Inc. All rights reserved.

isMaskStatusBar()

This method enables or disables the masking of the Status Bar on the device. It allows the
control of the visibility of the Status Bar by masking it based on the input parameter.

Prototype

void com.vfi.smartpos.system_service.aidl.ISystemManager.isMaskStatusBar(boolean

state)

Parameter

state A Boolean value that indicates the status of the Status Bar
masking:

 true: Enable masking of the Status Bar.

false: Disable masking of the Status Bar.

Return Values

void

updateROM()

This method is called to update the ROM of the device.

Prototype

void com.vfi.smartpos.system_service.aidl.ISystemManager.updateROM(String

zipPath)

Parameter

zipPath The file path to the ZIP containing the ROM update files. The
specified path must be valid and accessible to ensure
successful execution of the update process.

 Programmers Guide Girgit

 57
 © Verifone Inc. All rights reserved.

Return Values

void

getNetworkManager()

This method retrieves an instance of the network manager interface, allowing for
management of network-related operations.

Prototype

INetworkManager getNetworkManager()

Parameter

None.

Return Values

An instance of INetworkManager such as network type, APN information, Mobile Data, Wi-
Fi, and Ethernet Configuration.

setLocationMode()

This method sets the location mode of the device.

Prototype

void com.vfi.smartpos.system_service.aidl.ISystemManager.setLocationMode(int

status)

Parameter

 Programmers Guide Girgit

 58
 © Verifone Inc. All rights reserved.

status An integer parameter that specifies the desired location mode
for the device. The possible values for this parameter are
predefined constants, which represent different location modes.

 0: LOCATION_MODE_OFF (location services disabled).

1: LOCATION_MODE_SENSORS_ONLY (using only
sensors for location, such as GPS).

2: LOCATION_MODE_BATTERY_SAVING (using Wi-Fi
and mobile networks for location but with minimal
power consumption).

3: LOCATION_MODE_HIGH_ACCURACY (using GPS,
Wi-Fi, and mobile networks for high-precision
location).

Return Values

void

isAdbMode()

This method returns the current status of ADB mode on the device.

Prototype

boolean com.vfi.smartpos.system_service.aidl.ISystemManager.isAdbMode ()

Parameter

None.

Return Values

A Boolean value:

 Programmers Guide Girgit

 59
 © Verifone Inc. All rights reserved.

true: ADB is enabled on the device.

false: ADB is disabled on the device.

killApplication()

This method is used to terminate the specified application by providing its package name.

Prototype

boolean

com.vfi.smartpos.system_service.aidl.ISystemManager.killApplication(String

packageName)

Parameter

packageName The package name of the application user wants to terminate.

Return Values

A Boolean value:

true: If the application was successfully killed or terminated.

false: If there was a failure in killing the application.

 Programmers Guide Girgit

 60
 © Verifone Inc. All rights reserved.

restartApplication()

The method is used to restart a specific application by providing its package name.

Prototype

boolean

com.vfi.smartpos.system_service.aidl.ISystemManager.restartApplication(String

packageName)

Parameter

packageName The package name of the application that user wants to restart.

Return Values

A Boolean value:

true: If the application was successfully restarted.

false: If there was a failure in restarting the application.

initLogcat()

This method is used to initialize or configure logcat settings on the device, such as the
buffer size for logs. It provides flexibility in setting the logcat buffer size with different units
(e.g., MB or KB).

Prototype

boolean com.vfi.smartpos.system_service.aidl.ISystemManager.initLogcat(int

logcatBufferSize, int logcatBufferSizeSuffix, in Bundle bundle)

Parameter

logcatBufferSize The desired size of the logcat buffer. This determines how
much memory will be allocated to store log messages.

 Programmers Guide Girgit

 61
 © Verifone Inc. All rights reserved.

 logcatBufferSize
== 0:

The default buffer size will be applied,
which is typically set by the system.

logcatBufferSizeSuffix Specifies the unit for the buffer size.

 0: The suffix is "M" (megabytes).

1: The suffix is "K" (kilobytes).

bundle An optional Bundle object that can be used to pass additional
configuration options related to logcat.

Return Values

A Boolean value:

true: If the operation was successful.

false: If the operation failed.

getLogcat()

This method retrieves the logcat file based on the parameters provided.

Prototype

String com.vfi.smartpos.system_service.aidl.ISystemManager.getLogcat(String

logcatFileName, int compressType)

Parameter

logcatFileName This is the name of the logcat file user wish to retrieve.

 logcatFileName
== null:

If the value is null, the system will use a
default logcat file name.

compressType Defines the compression type for the log file.

 Programmers Guide Girgit

 62
 © Verifone Inc. All rights reserved.

 0: No compression (the file will be in plain
text format).

1: Gzipped (the file will be compressed using
.gz format).

Return Values

Returns the path or location of the log file as a String. The file path indicates where the
logcat file is stored on the system. If no file is found, it may return null.

getLaunchAppsInfo()

This method retrieves the usage count of applications within a specified time range.

Prototype

Bundle

com.vfi.smartpos.system_service.aidl.ISystemManager.getLaunchAppsInfo(long

beginTime, long endTime)

Parameter

beginTime The start time for retrieving app usage data. This is the
timestamp (in milliseconds) from which to begin the data
collection.

For example, beginTime =
Calendar.getInstance().setDate(date).getTimeInMillis()

endTime The end time for retrieving app usage data. This is the
timestamp (in milliseconds) up to which to collect app usage
information.

For example, endTime =
Calendar.getInstance().getTimeInMillis()

Return Values

 Programmers Guide Girgit

 63
 © Verifone Inc. All rights reserved.

Returns a Bundle containing the usage data, specifically a JSON string that represents a
list of UsageStats objects.

getSettingsManager()

This method retrieves an ISettingsManager object to perform settings-related actions.

Prototype

ISettingsManager

com.vfi.smartpos.system_service.aidl.ISystemManager.getSettingsManager ()

Parameter

None.

Return Values

Returns an instance of the ISettingsManager interface, which provides methods to interact
with the system's settings.

takeCapture()

The method captures the current screen content and returns it as a Bitmap object, which
can then be processed within the application.

Prototype

Bitmap com.vfi.smartpos.system_service.aidl.ISystemManager.takeCapture ()

Parameter

None.

Return Values

 Programmers Guide Girgit

 64
 © Verifone Inc. All rights reserved.

Returns a Bitmap object that represents the screenshot of the screen.

shutdownDevice()

This method is used to shut down the device.

Prototype

void com.vfi.smartpos.system_service.aidl.ISystemManager.shutdownDevice ()

Parameter

None.

Return Values

void

2.1.5 ISettingsManager

Package: com.vfi.smartpos.system_service.aidl.ISettingsManager

Overview:

This interface is used for managing different configuration settings on a device. It allows an application to
adjust key device parameters, which can include system settings such as time configuration, screen
brightness, and permissions.

NOTE
The enableAlertWindow(String packageName) method requires system-
level permissions, which are not supported on Verifone Android 13
devices. This functionality can be enabled by modifying the application
ID to start with com.priv.xxx (privilege access). For more details, refer to
the Girgit Migration Guide.

 Programmers Guide Girgit

 65
 © Verifone Inc. All rights reserved.

Public Member Functions:

Modifier and Type Method

int settingsSetActions (int settingsType, in Bundle bundle)

Bundle settingsReadActions (int settingsType, in Bundle bundle)

boolean settingPCIRebootTime (int hour, int min, int sec)

long getPCIRebootTime ()

void setScreenLock (boolean isLock)

boolean setDeviceBrightnessLevel (int level)

boolean isShowBatteryPercent (boolean isShow)

void enableAlertWindow (String packageName)

void clearCachesByPackageName (String packageName)

Member Function Documentation:

settingsSetActions()

This method is used to apply configuration settings on a device. The method allows the
system to set specific parameters based on the settingsType and a bundle containing the
relevant data.

Prototype

int com.vfi.smartpos.system_service.aidl.ISettingsManager.settingsSetActions

(int settingsType, in Bundle bundle)

Code Snippet

 Programmers Guide Girgit

 66
 © Verifone Inc. All rights reserved.

//set system time whether to sync auto network time

Bundle bundle = new Bundle();

bundle.putString("SYSTEM_TIME_ACTIONS",

SettingsActions.SystemTimeActions.SET_AUTO_SYSTEM_TIME_STATE);

More informations of "SYSTEM_TIME_ACTIONS" pleae refer to

SettingsActions.SystemTimeActions class;

bundle.putInt("AUTO_SYSTEM_TIME", 0);

0: disable sync

1: sync

//set system time zone whether to sync auto network time zone

Bundle bundle = new Bundle();

bundle.putString("SYSTEM_TIME_ACTIONS",

SettingsActions.SystemTimeActions.SET_AUTO_SYSTEM_TIME_ZONE_STATE);

More informations of "SYSTEM_TIME_ACTIONS" pleae refer to

SettingsActions.SystemTimeActions class;

bundle.putInt("AUTO_SYSTEM_TIME_ZONE", 0);

0: disable sync

1: sync

//set system time

Bundle bundle = new Bundle();

bundle.putString("SYSTEM_TIME_ACTIONS",

SettingsActions.SystemTimeActions.SET_AUTO_SYSTEM_TIME_ZONE_STATE);

More informations of "SYSTEM_TIME_ACTIONS" pleae refer to

SettingsActions.SystemTimeActions class;

bundle.putString("SYSTEM_DATE", "20200707"); date format is yyyyMMdd;

bundle.putString("SYSTEM_TIME", "150629"); time format is HHmmss;

//set launcher

Bundle bundle = new Bundle();

bundle.putString("LAUNCHER_ACTIONS",

SettingsActions.LauncherActions.SET_LAUNCHER);

More informations of "LAUNCHER_ACTIONS" pleae refer to

SettingsActions.LauncherActions class;

bundle.putString("LAUNCHER_PACKAGE_NAME", "com.vfi.android.payment"); // passing

launcher application package name.

bundle.putBoolean("RUN_PACKAGE", true); //true: run application, false: not run

application.

Parameters

settingsType An integer representing the type of settings to be configured. Possible
values:

 LAUNCHER Settings related to the launcher.

 Programmers Guide Girgit

 67
 © Verifone Inc. All rights reserved.

DATE_TIME Settings related to date and time.

bundle A Bundle containing the settings that need to be applied. Possible
values:

 Key Value Description

GET_AUTO_SYSTEM_TIME_STATE 1 Sync auto system time.

0 Disable sync auto
system time.

GET_AUTO_SYSTEM_TIME_ZONE

_STATE

1 Sync auto system time
zone.

0 Disable sync auto
system time zone.

Return Values

An integer indicating the result of the operation (e.g., success or failure).

0: The operation was successful, and the requested settings were retrieved.

-1: The operation failed, possibly due to an error while retrieving the settings.

settingsReadActions()

This method retrieves device settings based on the settingsType and returns them in a
bundle.

Prototype

Bundle com.vfi.smartpos.system_service.aidl.ISettingsManager.settingsReadActions

(int settingsType, in Bundle bundle)

Parameters

 Programmers Guide Girgit

 68
 © Verifone Inc. All rights reserved.

settingsType An integer indicating the type of settings to retrieve. The two possible
values:

 LAUNCHER Settings related to the launcher.

DATE_TIME Settings related to date and time.

bundle A Bundle to receive the settings data. Possible values:

 Key Value Description

GET_AUTO_SYSTEM_TIME_STATE 1 Sync auto system time.

0 Disable sync auto
system time.

GET_AUTO_SYSTEM_TIME_ZONE

_STATE

1 Sync auto system time
zone.

0 Disable sync auto
system time zone.

Return Values

A Bundle containing the retrieved settings.

If SettingActions is SystemTimeActions.GET_AUTO_SYSTEM_TIME_STATE
SYSTEM_TIME_ACTIONS.

1: Sync auto system time.

0: Disable sync auto system time.

If SettingActions is SystemTimeActions.GET_AUTO_SYSTEM_TIME_ZONE_STATE
AUTO_SYSTEM_TIME_ZONE.

1: Sync auto system time zone.

0: Disable sync auto system time zone.

 Programmers Guide Girgit

 69
 © Verifone Inc. All rights reserved.

settingPCIRebootTime()

This method is used to set the PCI reboot time on the device.

Prototype

boolean

com.vfi.smartpos.system_service.aidl.ISettingsManager.settingPCIRebootTime (int

hour, int min, int sec)

Parameters

hour Hour of the reboot time (24-hour format; range: 0-23).

min Minute of the reboot time (range: 0-59).

sec Second of the reboot time (range: 0-59).

Return Values

A Boolean indicating whether the PCI reboot time was successfully set.

true: The PCI reboot time was successfully set.

false: The attempt to set the PCI reboot time failed.

getPCIRebootTime()

This method retrieves the current PCI reboot time set on the device.

Prototype

long com.vfi.smartpos.system_service.aidl.ISettingsManager.getPCIRebootTime ()

Parameters

None.

 Programmers Guide Girgit

 70
 © Verifone Inc. All rights reserved.

Return Values

A long representing the reboot time in seconds.

setScreenLock()

This method is used to lock or unlock the device's screen.

Prototype

void com.vfi.smartpos.system_service.aidl.ISettingsManager.setScreenLock

(boolean isLock)

Parameters

isLock A Boolean representing the device screen lock status
depending on its value:

 true: Locks the device screen.

false: Unlocks the device screen.

Return Values

void

setDeviceBrightnessLevel()

This method sets the device's brightness level.

Prototype

boolean

com.vfi.smartpos.system_service.aidl.ISettingsManager.setDeviceBrightnessLevel

(int level)

 Programmers Guide Girgit

 71
 © Verifone Inc. All rights reserved.

Parameters

level An integer value representing the brightness level range from 0
to 255.

Return Values

A Boolean indicating whether the brightness level was successfully set.

true: The brightness level was successfully set.

false: The attempt to set the brightness level failed.

isShowBatteryPercent()

This method enables or disables the display of battery percentage on the device.

Prototype

boolean

com.vfi.smartpos.system_service.aidl.ISettingsManager.isShowBatteryPercent

(boolean isShow)

Parameters

isShow A Boolean indicating the display of the current battery
percentage on the device's status bar.

 true: Shows the battery percentage on the device's
status bar.

false: Hides the battery percentage from the status bar.

Return Values

A Boolean value indicating whether the setting was successfully applied.

true: The setting was successfully applied.

 Programmers Guide Girgit

 72
 © Verifone Inc. All rights reserved.

false: The setting was not successfully applied.

enableAlertWindow()

This method enables an alert window for a specified application identified by its package
name.

Prototype

void com.vfi.smartpos.system_service.aidl.ISettingsManager.enableAlertWindow

(String packageName)

Parameters

packageName The package name of the app for which the alert window
should be enabled.

Return Values

void

clearCachesByPackageName()

This method clears the cache of the specified application.

Prototype

void

com.vfi.smartpos.system_service.aidl.ISettingsManager.clearCachesByPackageName

(String packageName)

Parameters

packageName The package name of the app whose cache should be cleared.

Return Values

 Programmers Guide Girgit

 73
 © Verifone Inc. All rights reserved.

void

2.2 AIDL: Device Service

The device service AIDL interfaces provide a structured and efficient way to manage various device-level
operations on Neo devices. These interfaces define a set of methods to perform critical device functions
such as card reading and activation, transaction operations, beeper, and scanner operations, and
accessing device information and status functionalities etc.

2.2.1 CheckCardListener

Package: com.vfi.smartpos.deviceservice.aidl.CheckCardListener

Overview:

This interface provides callback methods for managing the card checking events such as card swiping,
powering up, activation, timeout, and error conditions.

Public Member Functions:

Modifier and Type Method

void onCardPowerUp ()

void onCardActivate ()

void onCardSwiped (in Bundle track)

void onTimeout ()

void onError (int error, String message)

 Programmers Guide Girgit

 74
 © Verifone Inc. All rights reserved.

Member Function Documentation:

onCardPowerUp()

This method is called when the card reader has been successfully powered on. It indicates
that the card reader is fully operational and ready for input, allowing users to proceed with
card insertion, swiping, or tapping.

Run IPBOC.startEMV to start EMV workflow.

Prototype

void com.vfi.smartpos.deviceservice.aidl.CheckCardListener.onCardPowerUp()

Parameters

None.

Return Values

void

See Also

Refer to IPBOC.startEMV() method under Section 2.2.15.

onCardActivate()

This method is called when a card is activated. It signals the application that the card is
ready for further transaction processing operations (such as initiating a secure transaction
or reading card data).

Run IPBOC.startEMV() to start EMV workflow.

Prototype

void com.vfi.smartpos.deviceservice.aidl.CheckCardListener.onCardActivate()

file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_i_p_b_o_c.html%23af30192e730d4de68ab0e2f3ded78a6d3

 Programmers Guide Girgit

 75
 © Verifone Inc. All rights reserved.

Parameters

None.

Return Values

void

See Also

Refer to IPBOC.startEMV() method under Section 2.2.15.

onCardSwiped()

This method is triggered immediately when a card is successfully swiped through the card
reader. It provides information about the card, which includes its PAN, track data, service
code, and expiration date.

Prototype

void com.vfi.smartpos.deviceservice.aidl.CheckCardListener.onCardSwiped (in

Bundle track)

Parameters

track A Bundle object containing card information. This includes:

PAN (String) The Primary Account Number (PAN)
of the card.

TRACK1 (String) Track 1 data.

TRACK2 (String) Track 2 data.

TRACK3 (String) Track 3 data.

file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_i_p_b_o_c.html%23af30192e730d4de68ab0e2f3ded78a6d3

 Programmers Guide Girgit

 76
 © Verifone Inc. All rights reserved.

SERVICE_CODE (String) The service code used to identify
the card.

EXPIRED_DATE (String) The expiration date of the card,
typically formatted as MM/YY.

Return Values

void

See Also

• onCardPowerUp()

• onCardActivate()

onTimeout()

This method is called when a card operation exceeds the defined time limit. After timeout,
the ongoing transaction is cancelled.

Prototype

void com.vfi.smartpos.deviceservice.aidl.CheckCardListener.onTimeout()

Parameters

None.

Return Values

void

onError()

This method is called when an error occurs during the card checking process.

file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_check_card_listener.html%23accc31747b8229ef00cee01b805d7a85e
file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_check_card_listener.html%23a3ec6dbbcf1e0bcf94a1aa0910e990e43

 Programmers Guide Girgit

 77
 © Verifone Inc. All rights reserved.

Prototype

void com.vfi.smartpos.deviceservice.aidl.CheckCardListener.onError(int error,

String message)

Parameters

error
An integer representing the error code associated with the event. The
following error codes may be encountered:

 Error Type Error
Code Description

SERVICE_CRASH (99) Service crash.

REQUEST_EXCEPTION (100)
Exception occurred
while processing
the request.

MAG_SWIPE_ERROR (1) Magnetic card read
error.

IC_INSERT_ERROR (2) Smart card read
error.

IC_POWERUP_ERROR (3) Smart card failed
to power up.

RF_PASS_ERROR (4) Contactless card
read error.

RF_ACTIVATE_ERROR (5) Contactless card
activation error.

MULTI_CARD_CONFLICT_ERROR (6) Multiple cards are
detected.

M1_CARD_UNSUPPORT_EMV_ERROR (7)
[M1Sn]M1 card is
not supported in
EMV process.

 Programmers Guide Girgit

 78
 © Verifone Inc. All rights reserved.

FELICA_CARD_UNSUPPORT_EMV_ERROR (8)
Felica card is not
supported in EMV
process.

DESFIRE_CARD_UNSUPPORT_EMV_ERROR (9)

DesFireSN]DesFire
card is not
supported in EMV
process.

message
A descriptive message providing additional context about the error
encountered.

Return Values

void

2.2.2 IBeeper

Package: com.vfi.smartpos.deviceservice.aidl.IBeeper

Overview:

This interface includes few methods to programmatically manage the beeping functionality of the device.
It allows you to start and stop the beep sound, providing control over audio feedback during transaction
processing.

Public Member Functions:

Modifier and Type Method

void startBeep (int msec)

void stopBeep ()

void startBeepWithConfig (int msec, in Bundle bundle)

 Programmers Guide Girgit

 79
 © Verifone Inc. All rights reserved.

Member Function Documentation:

startBeep()

This method enables the device beeper to emit sound for a duration specified in
milliseconds. It is invoked when a card removal prompt appears on the device screen.

NOTE
This method is non-blocking, allowing the program to
continue executing without waiting for the beeping to
finish.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IBeeper.startBeep(int msec)

Parameters

msec The duration for which the beeping sound will occur, specified in
milliseconds. If this value is set to `0`, the beeper will be inactive, and no
sound will be produced.

Return Values

void

stopBeep()

This method is called to stop the beeping sound instantly.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IBeeper.stopBeep()

Parameters

 Programmers Guide Girgit

 80
 © Verifone Inc. All rights reserved.

None.

Return Values

void

startBeepWithConfig()

This method is used to initiate a beeping sound based on a given configuration. It is a non-
blocking method.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IBeeper.startBeepWithConfig (int msec,

in Bundle bundle)

Parameters

msec Specifies the duration (in milliseconds) for how long the beep sound will
play. If it is set as 0, the device will not beep.

bundle A Bundle object that contains additional configuration options for the
beep. It includes:

The frequency of the beeping sound in Hertz (Hz). The default
value is 850 Hz (the frequency can be set within a range of :20Hz
to 20000Hz).

Example: bundle.putInt("HZ", 600).

Return Values

void

2.2.3 ScannerListener

Package: com.vfi.smartpos.deviceservice.aidl.ScannerListener

 Programmers Guide Girgit

 81
 © Verifone Inc. All rights reserved.

Overview:

This interface manages several events associated with barcode scanning functionality on the device. It
provides several callback methods to manage different outcomes of a scanning operation, such as
success, error, timeout, and cancellation.

Public Member Functions:

Modifier and Type Method

void onSuccess (String barcode)

void onError (int error, String message)

void onTimeout ()

void onCancel ()

Member Function Documentation:

onSuccess()

This method is called upon the successful scanning of a barcode.

Prototype

void com.vfi.smartpos.deviceservice.aidl.ScannerListener.onSuccess(String

barcode)

Parameters

barcode A string that encapsulates the scanned barcode data. This
value represents the unique identifier retrieved from the
scanned barcode.

Return Values

 Programmers Guide Girgit

 82
 © Verifone Inc. All rights reserved.

void

onError()

This method is called when an error occurs during the barcode scanning process.

Prototype

void com.vfi.smartpos.deviceservice.aidl.ScannerListener.onError(int error,

String message)

Parameters

error An integer representing the error code associated with the
scanning failure.

 -1: Indicates that the scan has failed.

message A string providing additional information about the error. It
helps in understanding the nature of the failure.

Return Values

void

onTimeout()

This method is called when the barcode scanning operation exceeds the allowed time
limit.

Prototype

void com.vfi.smartpos.deviceservice.aidl.ScannerListener.onTimeout()

Parameter

None.

 Programmers Guide Girgit

 83
 © Verifone Inc. All rights reserved.

Return Values

void

onCancel()

This method is called when the user cancels the barcode scanning operation.

Prototype

void com.vfi.smartpos.deviceservice.aidl.ScannerListener.onCancel()

Parameter

None.

Return Values

void

2.2.4 PrinterListener

Package: com.vfi.smartpos.deviceservice.aidl.PrinterListener

Overview:

This interface provides callback methods to notify users about the status of a print operation on a device.

Public Member Functions:

Modifier and Type Method

void onFinish ()

 Programmers Guide Girgit

 84
 © Verifone Inc. All rights reserved.

void onError (int error)

Member Function Documentation:

onFinish()

This method is called when the print operation completes successfully, signaling the end
of the printing.

Prototype

void com.vfi.smartpos.deviceservice.aidl.PrinterListener.onFinish()

Parameters

None.

Return Values

void

onError()

This method is called when an error occurs during the print process. It provides an error
code that indicates the nature of the issue encountered.

Prototype

void com.vfi.smartpos.deviceservice.aidl.PrinterListener.onError (int error)

Parameters

error Contains the specific error code associated with the print operation failure.
Possible error code values:

 Programmers Guide Girgit

 85
 © Verifone Inc. All rights reserved.

Error Type
Error
Code

Description

ERROR_NONE (0x00) Normal operation.

ERROR_PAPERENDED (0xF0) Out of paper.

ERROR_NOCONTENT (0xF1) No content to print.

ERROR_HARDERR (0xF2) Printer hardware error.

ERROR_OVERHEAT (0xF3) Printer overheating.

ERROR_NOBM (0xF6) No black mark detected.

ERROR_BUSY (0xF7) Printer is busy.

ERROR_MOTORERR (0xFB) Motor malfunction.

ERROR_LOWVOL (0xE1) Low battery voltage.

ERROR_NOTTF (0xE2) No True Type Font (TTF)
available.

ERROR_BITMAP_TOOWIDE (0xE3) Bitmap width exceeds limit.

Return Values

void

2.2.5 PinInputListener

Package: com.vfi.smartpos.deviceservice.aidl.PinInputListener

Overview:

This interface provides callback methods to manage PIN input operations on the device. It handles the
events related to processing PIN input, confirming entries, managing cancel events, and responding to
error conditions.

 Programmers Guide Girgit

 86
 © Verifone Inc. All rights reserved.

Public Member Functions:

Modifier and Type Method

void onInput (int len, int key)

void onConfirm (byte[] data, boolean isNonePin)

void onCancel ()

void onError (int errorCode)

Member Function Documentation:

onInput()

This method is called upon PIN input process, when a user enters a PIN on the device.

Prototype

void com.vfi.smartpos.deviceservice.aidl.PinInputListener.onInput(int len, int

key)

Parameters

len The length of the entered PIN (length ranges from 4 to 10 digits).

key The masked key value associated with the input. It is used for PIN
character masking.

Return Values

void

 Programmers Guide Girgit

 87
 © Verifone Inc. All rights reserved.

onConfirm()

This method is called when the PIN entry has been completed and confirmed.

Prototype

void com.vfi.smartpos.deviceservice.aidl.PinInputListener.onConfirm (byte[]

data,boolean isNonePin)

Parameters

data The byte array representation of the entered PIN number. If no PIN is
entered, this will be ‘null’.

isNonePin A Boolean value that indicates whether the user entered a PIN or not.

 true: No PIN is entered.

false: PIN is entered.

Return Values

void

onCancel()

This method is called when the user cancels the PIN input process before completion.

Prototype

void com.vfi.smartpos.deviceservice.aidl.PinInputListener.onCancel ()

Parameters

None.

Return Values

 Programmers Guide Girgit

 88
 © Verifone Inc. All rights reserved.

void

onError()

This method is called when an error occurs during the PIN entry process, such as input
validation failures, encryption issues, or other unforeseen exceptions.

Prototype

void com.vfi.smartpos.deviceservice.aidl.PinInputListener.onError (int

errorCode)

Parameters

errorCode Contains the type of error encountered during the PIN input process.
Possible values:

Error
Code Error Type Description

-1 Input exception An unexpected input scenario
occurred.

-2 Input time out The user took too long to enter the
PIN.

-3 Plain text is null The input data had no value.

-4 Encrypt error There was a failure in encrypting the
entered PIN.

-5 Cipher text is null The resulting cipher text from the
process is empty.

0xff Other error Indicates an unspecified error
occurred.

Return Values

void

 Programmers Guide Girgit

 89
 © Verifone Inc. All rights reserved.

2.2.6 PBOCHandler

Package: com.vfi.smartpos.deviceservice.aidl.PBOCHandler

Overview:

This interface manages payment transaction operations within the application, adhering to the PBOC
standards. It includes callback methods that facilitate the handling of various stages of payment
transactions, including transaction amount requests, application selection, card information
confirmation, PIN entry, and transaction outcomes.

Public Member Functions:

Modifier and Type Method

void onRequestAmount ()

void onSelectApplication (in List< String > appList)

void onConfirmCardInfo (in Bundle info)

void onRequestInputPIN (boolean isOnlinePin, int retryTimes)

void onConfirmCertInfo (String certType, String certInfo)

void onRequestOnlineProcess (in Bundle aaResult)

void onTransactionResult (int result, in Bundle data)

 Programmers Guide Girgit

 90
 © Verifone Inc. All rights reserved.

Member Function Documentation:

onRequestAmount()

This method is called to request the transaction amount.

NOTE
This method is deprecated and will not be called. The
amount should be set while calling the IPBOC.startEMV.

Prototype

void com.vfi.smartpos.deviceservice.aidl.PBOCHandler.onRequestAmount ()

Code Snippet

// show the amount screen and import the amount

ipboc.importAmount((int) amount);

// abort

ipboc.abortPBOC();

Parameters

None.

Return Values

void

See Also

Refer to IPBOC.startEMV() and IPBOC.abortPBOC() methods under Section 2.2.15.

file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_i_p_b_o_c.html%23af30192e730d4de68ab0e2f3ded78a6d3

 Programmers Guide Girgit

 91
 © Verifone Inc. All rights reserved.

onSelectApplication()

This method is called to select a specific application from a list of applications available on
the smart card.

Prototype

void com.vfi.smartpos.deviceservice.aidl.PBOCHandler.onSelectApplication (in

List<String> appList)

Code Snippet

IPBOC ipboc;

@Override

public void onSelectApplication(List<String> appList) throws RemoteException {

 int i = 1;

 //check the cancel flag

 Boolean cancelSelectApplication = false;

 if (cancelSelectApplication) {

 ipboc.abortPBOC();

 // ("user cancel");

 return;

 }

 for (String str : appList) {

 msg = i++ + ".AppName=" + str + "\n";

 }

 //show the application list, get the index

 ipboc.importAppSelect(index);

}

Parameters

appList The list of application names available on the smart card.

Return Values

void

See Also

Refer to IPBOC.abortPBOC() and IPBOC.importAppSelect() methods under Section
2.2.15.

 Programmers Guide Girgit

 92
 © Verifone Inc. All rights reserved.

onConfirmCardInfo()

This method is called for confirming card information before proceeding with the
transaction. It contains the necessary card details, including the card number, service
codes, and expiration dates.

Prototype

void com.vfi.smartpos.deviceservice.aidl.PBOCHandler.onConfirmCardInfo (in

Bundle info)

Code Snippet

@Override

 public void onConfirmCardInfo(Bundle info) throws RemoteException {

 // display the card infor

 String result = "onConfirmCardInfo callback, \nPAN:" +

info.getString("PAN") +

 "\nTRACK2:" + info.getString("TRACK2") +

 "\nCARD_SN:" + info.getString("CARD_SN")+

 "\nSERVICE_CODE:" + info.getString("SERVICE_CODE") +

 "\nEXPIRED_DATE:" + info.getString("EXPIRED_DATE");

 if (true) {

 byte[] strs = ipboc.getCardData("9F51");

 } else {

 }

 // get the result

 if (cancel) {

 ipboc.abortPBOC();

 ipboc.importCardConfirmResult(false);

 } else {

 ipboc.importCardConfirmResult(true);

 }

 }

}

Parameters

info A Bundle containing card information:

PAN(String) The Primary Account Number (PAN).

TRACK2(String) Track 2 data.

 Programmers Guide Girgit

 93
 © Verifone Inc. All rights reserved.

CARD_SN(String) Card serial number.

SERVICE_CODE(String) Service code used to identify the card.

EXPIRED_DATE(String) Expiration date of the card, typically
formatted as MM/YY.

Return Values

void

See Also

Refer to IPBOC.abortPBOC() and IPBOC.importCardConfirmResult() methods under
Section 2.2.15.

onRequestInputPIN()

This method is called to request input for a PIN from the user.

Prototype

void com.vfi.smartpos.deviceservice.aidl.PBOCHandler.onRequestInputPIN (boolean

isOnlinePin, int retryTimes)

Parameters

isOnlinePin A Boolean value indicating whether the PIN should be processed
online or offline.

 true: The PIN input is required for an online transaction.

false: The PIN input is required for an offline transaction.

retryTimes The maximum number of retry attempts allowed for entering the PIN
in case of an offline transaction.

Return Values

 Programmers Guide Girgit

 94
 © Verifone Inc. All rights reserved.

void

onConfirmCertInfo()

This method is used to confirm certificate information of the card holder.

Prototype

void com.vfi.smartpos.deviceservice.aidl.PBOCHandler.onConfirmCertInfo (String

certType, String certInfo)

Parameters

certType The type of certificate being confirmed.

certInfo The certificate information associated with the certificate type.

Return Values

void

onRequestOnlineProcess()

This method is called to request online transaction process.

Prototype

void com.vfi.smartpos.deviceservice.aidl.PBOCHandler.onRequestOnlineProcess (in

Bundle aaResult)

Code Snippet

@Override public void onRequestOnlineProcess(Bundle aaResult) throws

RemoteException { String result = "onRequestOnlineProcess callback RESULT:" +

aaResult.getInt(BUNDLE_TRANS_RESULT) + "\nARQC_DATA:" +

aaResult.getString(BUNDLE_ARQC_DATA) + "\nREVERSAL_DATA:" +

aaResult.getString(BUNDLE_REVERSAL_DATA) + "\nCARD_ORG:" +

 Programmers Guide Girgit

 95
 © Verifone Inc. All rights reserved.

aaResult.getString(BUNDLE_EMV_CARDORG) + "\nPAN:" +

aaResult.getString(BUNDLE_PBOC_PAN) + "\nTRACK2:" +

aaResult.getString(BUNDLE_PBOC_TRACK2) + "\nEXPIRD_DATE:" +

aaResult.getString(BUNDLE_PBOC_EXPIRED_DATE) + "\nCARD_SN:" +

aaResult.getString(BUNDLE_PBOC_CARD_SN) + "\nDATE:" +

aaResult.getString(BUNDLE_EMV_DATE) + "\nTIME:" +

aaResult.getString(BUNDLE_EMV_TIME) + "\nCARD_HOLDER_NAME:" +

aaResult.getString(BUNDLE_EMV_HOLDERNAME);

Boolean getAppTLVListOption = true; if (getAppTLVListOption) { String[] strlist

= {"9F33", "9F40", "9F10", "9F26", "95", "9F37", "9F1E", "9F36", "82", "9F1A",

"9A", "9B", "50", "84", "5F2A", "8F"}; String strs =

ipboc.getAppTLVList(strlist); }

Boolean getData = importData.getBoolean(BUNDLE_IMPORT_IS_GET_PBOC_DATA); if

(getData) { String strs = "PAN:" + ipboc.getPBOCData(BUNDLE_PBOC_PAN) + "\n" +

"TRACK2:" + My15getPBOCData(BUNDLE_PBOC_TRACK2) + "\n" + "CARD_SN:" +

My15getPBOCData(BUNDLE_PBOC_CARD_SN) + "\n" + "EXPIRED_DATE:" +

My15getPBOCData("EXPIRED_DATE") + "\n" + "DATE:" + My15getPBOCData("DATE") +

"\n" + "TIME:" + My15getPBOCData("TIME") + "\n" + "BALANCE:" +

My15getPBOCData("BALANCE") + "\n" + "CURRENCY:" + My15getPBOCData("CURRENCY");

Log.d(TAG, "getPBOCData : " + strs); }

String[] tvr = {"95"}; ipboc.getAppTLVList(tvr);

//online String online_result = "";

//do online finish process ipboc.inputOnlineResult(importData, new

MyOnlineResultHandler()); }

Parameters

aaResult A Bundle containing the result data for the online process. It includes:

 RESULT(int) An integer indicating the
outcome of the online
process.

 QPBOC_ARQC (201) -
QPBOC_ARQC, online
request, part of PBOC
standard.

AARESULT_ARQC (2) -
AARESULT ARQC, the
action analysis result.

 Programmers Guide Girgit

 96
 © Verifone Inc. All rights reserved.

PAYPASS_MAG_ARQC
(302)-The mode of
magnetic card on
PayPass request.

PAYPASS_EMV_ARQC
(303)- The mode of
EMV on PayPass
request.

ARQC_DATA(String) The ARQC (Authorization
Request Cryptogram) data. It
requests some of Field55
data. You can also use
getAppTLVList() method to
retrieve this data.

 CTLS data include:
"9F26, 9F27, 9F10,
9F37, 9F1A, 9F36, 95,
9A, 9C, 9F02, 5F2A, 82,
9F03, 9F33, 9F34,
9F35, 84, 9F1E, 9F09,
9F41").

IC data include: "9F26,
9F27, 9F10, 9F37,
9F36, 95, 9A, 9C, 9F02,
5F2A, 82, 9F1A, 9F03,
9F33, 9F34, 9F35,
9F1E, 84, 9F09, 9F41").

REVERSAL_DATA(String) Data for reversing the
transaction if necessary. This
is a subset of the Field55 data
for the IC card.

 (IC data include "9F26,
9F27, 9F10, 9F37,
9F36, 95, 9A, 9C, 9F02,

 Programmers Guide Girgit

 97
 © Verifone Inc. All rights reserved.

5F2A, 82, 9F1A, 9F03,
9F33, 9F34, 9F35,
9F1E, 84, 9F09, 9F41").

 You can get the following from ARQC data:

 CARD_ORG(String) The card organization.

PAN(String) The PAN.

TRACK2(String) The track 2.

EXPIRED_DATE(String) Expired date.

CARD_SN(String) The card SN.

DATE(String) The date of transaction.

TIME(String) The time of transaction.

CARD_HOLDER_NAME(String) The card holder name.

Return Values

void

See Also

Refer to IPBOC.getAppTLVList(), IPBOC.getPBOCData() and IPBOC.inputOnlineResult()
methods under Section 2.2.15.

onTransactionResult()

This method is called to process the outcome of a transaction request, logging the result
(success or failure) and handling any associated data or errors.

Prototype

void com.vfi.smartpos.deviceservice.aidl.PBOCHandler.onTransactionResult

(int result, in Bundle data)

 Programmers Guide Girgit

 98
 © Verifone Inc. All rights reserved.

Code Snippet

@Override

public void onTransactionResult(int result, Bundle data) throws RemoteException

{

 Log.i(TAG, "onTransactionResult callback, result:" + result +

 "\nTC_DATA:" + data.getString(BUNDLE_TC_DATA) +

 "\nREVERSAL_DATA:" + data.getString(BUNDLE_REVERSAL_DATA) +

 "\nERROR:" + data.getString(BUNDLE_TRANS_ERROR));

 if ((type == 3) && (transType == EC_BALANCE || transType == Q_QUERY)) {

 String ecBalance = ipboc.getPBOCData("BALANCE");

 Log.i(TAG, "BALANCE:" + ecBalance);

 if (ecBalance != null)

 msg = ":" + ecBalance;

 logUtils.addCaseLog(msg);

 }

 msg = "result:" + result + "\n" + data.getString(BUNDLE_TRANS_ERROR);

 Message message1 = new Message();

 message1.getData().putString("message", msg);

 handler.sendMessage(message1);

}

Parameters

result An integer representing the specific result of the EMV transaction. The
values can signify various states, including success, errors, and other
critical transaction conditions. Below are the defined result codes:

 Error Type Error
Code

Description

EMV_NO_APP (8) Indicates that no EMV
application is found (aid
parameter).

EMV_COMPLETE (9) The EMV transaction
completed successfully.

EMV_OTHER_ERROR (11) General error indicating
that the transaction has
been aborted.

 Programmers Guide Girgit

 99
 © Verifone Inc. All rights reserved.

EMV_FALLBACK (12) Transaction fallback
initiated.

EMV_DATA_AUTH_FAIL (13) Offline data authentication
failure during EMV
processing.

EMV_APP_BLOCKED (14) The application has been
locked and is not usable.

EMV_NOT_ECCARD (15) Indicates the card
presented is not an
electronic cash card.

EMV_UNSUPPORT_ECCAR
D

(16) The transaction does not
support electronic cash
cards.

EMV_AMOUNT_EXCEED_O
N_PURELYEC

(17) The consumption amount
of pure electronic
cash card exceeds the
limit.

 EMV_SET_PARAM_ERROR (18) Set parameter fail on 9F7A.

EMV_PAN_NOT_MATCH_TR
ACK2

(19) The PAN does not match
the track 2 data.

EMV_CARD_HOLDER_VALI
DATE_ERROR

(20) Cardholder authentication
failed.

EMV_PURELYEC_REJECT (21) Transaction declined for
purely electronic cash card.

EMV_BALANCE_INSUFFICIE
NT

(22) Insufficient balance.

EMV_AMOUNT_EXCEED_O
N_RFLIMIT_CHECK

(23) Check if the transaction
amount exceeds the
contactless limit.

 Programmers Guide Girgit

 100
 © Verifone Inc. All rights reserved.

EMV_CARD_BIN_CHECK_F
AIL

(24) Card reading failed.

EMV_CARD_BLOCKED (25) Card is locked.

EMV_MULTI_CARD_ERROR (26) Doka conflict.

EMV_BALANCE_EXCEED (27) Balance exceeds the limit.

EMV_RFCARD_PASS_FAIL (60) Tap card failure.

EMV_IN_QPBOC_PROCESS (99) qPBOC is processing.

AARESULT_TC (0) TC on action analysis.

AARESULT_AAC (1) Refuse on action analysis.

QPBOC_AAC (202) Refuse on qPBOC.

QPBOC_ERROR (203) Error while processing
qPBOC.

QPBOC_TC (204) TC on qPBOC.

QPBOC_CONT (205) Need contact for further
processing.

QPBOC_NO_APP (206) Result of qPBOC, indicating
no application (UP Card
may be available).

QPBOC_NOT_CPU_CARD (207) The card present is not a
CPU card.

QPBOC_ABORT (208) Transaction abort.

EMV_SEE_PHONE (150) PayPass result, please
check the result on
phone.

 Programmers Guide Girgit

 101
 © Verifone Inc. All rights reserved.

data A Bundle object containing associated data related to the transaction
result.

 TC_DATA(String) The string of TC; use
getAppTLVList() to get the data.

TC data include "9F26, 9F27, 9F10,
9F37, 9F36, 95, 9A,
9C, 9F02, 5F2A, 82, 9F1A, 9F03,
9F33, 9F34, 9F35,
9F1E, 84, 9F09, 9F41, 9F63, 91".

REVERSAL_DATA(String) The string of reversal data.

ERROR(String) The error description (from the
result of PBOC).

Return Values

void

See Also

Refer to IPBOC.getPBOCData() method under Section 2.2.15.

2.2.7 OnlineResultHandler

Package: com.vfi.smartpos.deviceservice.aidl.OnlineResultHandler

Overview:

This interface handles the result of the online processing for PBOC transactions on devices. It provides
one callback method, onProccessResult(), which is invoked upon the completion of an online
transaction.

Public Member Functions:

Modifier and Type Method

 Programmers Guide Girgit

 102
 © Verifone Inc. All rights reserved.

void onProccessResult (int result, in Bundle data)

Member Function Documentation:

onProccessResult()

This method is called to process the result of an online transaction, with its outcome
indicated by the result parameter.

Prototype

void

com.vfi.smartpos.deviceservice.aidl.OnlineResultHandler.onProccessResult(int

result, in Bundle data)

Parameters

result An integer indicating the status of the online transaction. The potential
outcomes are defined by several error codes, each representing a distinct result
of the transaction process.

 Error Type Error
Code

Description

ONLINE_RESULT_TC (0) Online
transaction
successful.

ONLINE_RESULT_AAC (1) Online
transaction
refused.

ONLINE_RESULT_OFFLINE_TC (101) Online
transaction
failed; offline
transaction
successful.

 Programmers Guide Girgit

 103
 © Verifone Inc. All rights reserved.

ONLINE_RESULT_SCRIPT_NOT_EXECUTE (102) Script not
executed.

ONLINE_RESULT_SCRIPT_EXECUTE_FAIL (103) Script execution
failed.

ONLINE_RESULT_NO_SCRIPT (104) Online
transaction
failed; no script
sent.

ONLINE_RESULT_TOO_MANY_SCRIPT (105) Online
transaction
failed; more than
one script sent.

ONLINE_RESULT_TERMINATE (106) Online
transaction
failed,
transaction
terminated (GAC
return value is
not 9000,
transaction
termination
indicated by
0x8F).

ONLINE_RESULT_ERROR (107) Online
transaction
failed, EMV
kernel error.

ONLINE_RESULT_OTHER_ERROR (110) Other errors.

data A Bundle containing additional data related to the transaction result.

 TC_DATA(String) The TC (Transaction
Certificate) data in TLV

 Programmers Guide Girgit

 104
 © Verifone Inc. All rights reserved.

(Tag-Length-Value)
format.

SCRIPT_DATA(String) The script result data in
TLV format.

REVERSAL_DATA(String) The reversal data in TLV
format.

Return Values

void

2.2.8 EMVHandler

Package: com.vfi.smartpos.deviceservice.aidl.EMVHandler

Overview:

This interface provides a set of callback methods for handling different events during an EMV transaction
process. These methods cover critical phases, including amount requests, application selections, card
information confirmations, PIN inputs, certificate verifications, online processing, and transaction results.

Public Member Functions:

Modifier and Type Method

void onRequestAmount ()

void onSelectApplication (in List< Bundle > appList)

void onConfirmCardInfo (in Bundle info)

void onRequestInputPIN (boolean isOnlinePin, int retryTimes)

void onConfirmCertInfo (String certType, String certInfo)

void onRequestOnlineProcess (in Bundle aaResult)

void onTransactionResult (int result, in Bundle data)

 Programmers Guide Girgit

 105
 © Verifone Inc. All rights reserved.

int[] onGetCTLSAppPriority (in List< Bundle > appList)

Member Function Documentation:

onRequestAmount()

This method is called to request the transaction amount.

NOTE
This method is deprecated and will not be called. The
amount should be set while calling IEMV.startEMV()
method.

Prototype

void com.vfi.smartpos.deviceservice.aidl.EMVHandler.onRequestAmount()

Parameters

None.

Return Values

void

See Also

Refer to IEMV.startEMV() and IEMV.abortEMV() methods under Section 2.2.10.

onRequestInputPIN()

This method is called to request PIN input from the user.

Prototype

 Programmers Guide Girgit

 106
 © Verifone Inc. All rights reserved.

void com.vfi.smartpos.deviceservice.aidl.EMVHandler.onRequestInputPIN(boolean

isOnlinePin, int retryTimes)

Parameters

isOnlinePin A Boolean value indicating whether the PIN should be processed
online or offline.

 true: The PIN input is required for an online transaction.

false: The PIN input is required for an offline transaction.

retryTimes The maximum number of retry attempts allowed for entering the PIN
in case of an offline transaction.

Return Values

void

onRequestOnlineProcess()

This method is called to request online process of an EMV transaction.

During this process, the payment application performs various checks and validations,
such as verifying the cardholder's identity, checking for sufficient funds, and obtaining
authorization for the transaction.

Prototype

void com.vfi.smartpos.deviceservice.aidl.EMVHandler.onRequestOnlineProcess(in

Bundle aaResult)

Parameters

aaResult A Bundle containing the result data from the application authentication
process. It includes:

 Programmers Guide Girgit

 107
 © Verifone Inc. All rights reserved.

 SIGNATURE(Boolean) Indicates whether a signature is
required.

CTLS_CVMR(int) Contains the Cardholder
Verification Method (CVM) result for
contactless (CTLS) transactions.

0: No CVM required.

1: CVM with PIN.

2: CVM with signature.

3: CDCVM (Consumer
Device Cardholder
Verification Method).

RESULT(int) The type of result from the online
process.

CTLS_ARQC (201): Online
request part of the EMV
standard.

AARESULT_ARQC (2): Action
analysis result.

PAYPASS_MAG_ARQC
(302): Magnetic card mode
on PayPass request.

PAYPASS_EMV_ARQC (303):
EMV mode on PayPass
request.

ARQC_DATA(String) The ARQC (Authorization Request
Cryptogram) data. It requests some
of Field55 data. You can also use
getAppTLVList() method to retrieve
this data.

 Programmers Guide Girgit

 108
 © Verifone Inc. All rights reserved.

CTLS data include: 9F26,
9F27, 9F10, 9F37, 9F36, 95,
9A, 9C, 9F02, 5F2A, 82,
9F03, 9F33, 9F34, 9F35, 84,
9F1E, 9F09, 9F41.

REVERSAL_DATA(String) Data for reversing the transaction if
necessary. This is a subset of the
Field55 data for the IC card.

Example IC data include:
9F26, 9F27, 9F10, 9F37,
9F36, 95, 9A, 9C, 9F02,
5F2A, 82, 9F03, 9F33, 9F34,
9F35, 9F1E, 84, 9F09, 9F41.

Return Values

void

See Also

Refer to IEMV.getAppTLVList(), IEMV.getEMVData() and IEMV.inputOnlineResult()
methods under Section 2.2.10.

onSelectApplication()

This method is called to select a specific application from a list of applications available on
the smart card.

Prototype

void com.vfi.smartpos.deviceservice.aidl.EMVHandler.onSelectApplication(in List<

Bundle >appList)

Code Snippet

IEMV iemv;

 Programmers Guide Girgit

 109
 © Verifone Inc. All rights reserved.

@Override

public void onSelectApplication(List<Bundle> appList) throws RemoteException {

 int i = 1;

 //check the cancel flag

 Boolean cancelSelectApplication = false;

 if (cancelSelectApplication) {

 iemv.abortEMV();

 // ("user cancel");

 return;

 }

 for (Bundle app : appList) {

 }

 //show the application list, get the index

 iemv.importAppSelection(index);

}

Parameters

appList A collection of application bundles, each representing an
application available on the smart card. Each application bundle
contains following details of the application.

 aidName(String) TAG9F12 Application Preferred Name.

aidLabel(String) TAG50 Application Label.

aid(String) Application Identifier.

aidPriority(int) TAG87 Application Priority Indicator.

aidIssuerIdx(int) TAG9F11 Issuer Code Table Index.

Return Values

void

See Also

Refer to IEMV.abortEMV() and IEMV.importAppSelection() methods under Section
2.2.10.

 Programmers Guide Girgit

 110
 © Verifone Inc. All rights reserved.

onConfirmCardInfo()

This method is called for confirming card information before proceeding with the
transaction. It contains the necessary card details, including the card number, service
codes, and expiration dates.

Prototype

void com.vfi.smartpos.deviceservice.aidl.EMVHandler.onConfirmCardInfo(in Bundle

info)

Code Snippet

@Override

 public void onConfirmCardInfo(Bundle info) throws RemoteException {

 // display the card infor

 String result = "onConfirmCardInfo callback, \nPAN:" +

info.getString("PAN") +

 "\nTRACK2:" + info.getString("TRACK2") +

 "\nCARD_SN:" + info.getString("CARD_SN")+

 "\nSERVICE_CODE:" + info.getString("SERVICE_CODE") +

 "\nEXPIRED_DATE:" + info.getString("EXPIRED_DATE");

 if (true) {

 byte[] strs = iemv.getCardData("9F51");

 } else {

 }

 // get the result

 if (cancel) {

 iemv.abortEMV();

 iemv.importCardConfirmResult(false);

 } else {

 iemv.importCardConfirmResult(true);

 }

 }

}

Parameters

info Contains card information.

 PAN(String) The PAN.

 Programmers Guide Girgit

 111
 © Verifone Inc. All rights reserved.

TRACK1(String) Track 1 data.

TRACK2 (String) Track 2 data.

CARD_SN(String) Card serial number.

SERVICE_CODE(String) Service code.

EXPIRED_DATE(String) Expiration date of the card.

CARD_TYPE(int) Card type by CTLS.

 0: EMV card.

1: MST stripe card.

2: Other.

Return Values

void

 See Also

Refer to EMV.abortEMV() and IEMV.importCardConfirmResult() methods under Section
2.2.10.

onConfirmCertInfo()

This method is called to confirm cardholder certification information during EMV transaction
process.

Prototype

void com.vfi.smartpos.deviceservice.aidl.EMVHandler.onConfirmCertInfo(String

certType, String certInfo)

Parameters

 Programmers Guide Girgit

 112
 © Verifone Inc. All rights reserved.

certType The type of certificate being confirmed.

certInfo The certificate information associated with the certificate
type.

Return Values

void

onTransactionResult()

This method is called to provide the result of an EMV transaction, including successful completion
and multiple error scenarios.

Prototype

void com.vfi.smartpos.deviceservice.aidl.EMVHandler.onTransactionResult(int result, in

Bundle data)

Parameters

resul

t
An integer representing the specific result of the EMV transaction. The values can
signify various states, including success, errors, and other critical transaction
conditions. Below are the defined result codes:

 Error Type Error
Code

Description

EMV_NO_APP (8) EMV no application
found (aid param).

EMV_COMPLETE (9) EMV transaction
completed.

EMV_OTHER_ERROR (11) Other error
encountered,
transaction abort.

 Programmers Guide Girgit

 113
 © Verifone Inc. All rights reserved.

EMV_FALLBACK (12) Fallback procedure
initiated.

EMV_DATA_AUTH_FAIL (13) Data authentication
failure.

EMV_APP_BLOCKED (14) Application has been
blocked.

EMV_NOT_ECCARD (15) Card is not recognized
as an EMV card.

EMV_UNSUPPORT_ECCARD (16) Unsupported EMV card.

EMV_AMOUNT_EXCEED_ON_PURELYEC (17) Amount exceeds the
EC limit.

EMV_SET_PARAM_ERROR (18) Set parameter fail on
9F7A.

EMV_PAN_NOT_MATCH_TRACK2 (19) PAN does not match
track 2 data.

EMV_CARD_HOLDER_VALIDATE_ERROR (20) Cardholder validation
error.

EMV_PURELYEC_REJECT (21) Purely EC transaction
rejected.

EMV_BALANCE_INSUFFICIENT (22) Balance insufficient.

EMV_AMOUNT_EXCEED_ON_RFLIMIT_CHECK (23) Amount exceeded the
CTLS limit.

EMV_CARD_BIN_CHECK_FAIL (24) Check card failed.

EMV_CARD_BLOCKED (25) Card has been blocked.

EMV_MULTI_CARD_ERROR (26) Multiple card conflict.

 Programmers Guide Girgit

 114
 © Verifone Inc. All rights reserved.

EMV_INITERR_GPOCMD (27) GPO Processing
Options response error.

EMV_GACERR_GACCMD (28) GAC response error.

EMV_TRY_AGAIN (29) Try again.

EMV_ODA_FAILED (30) ODA failed.

EMV_CVM_FAILED (31) CVM response error.

EMV_RFCARD_PASS_FAIL (60) Tap card failure.

AARESULT_TC (0) TC on action analysis.

AARESULT_AAC (1) Refuse on action
analysis.

CTLS_AAC (202) Refuse on CTLS.

CTLS_ERROR (203) Error on CTLS.

CTLS_TC (204) Approval on CTLS.

CTLS_CONT (205) Need contact.

CTLS_NO_APP (206) Result of CTLS, no
application (UP Card
maybe available).

CTLS_NOT_CPU_CARD (207) The card is not a CPU
card.

CTLS_ABORT (208) Transaction aborted.

CTLS_ISSUERUPDATE_APPROVE (209) Second tap for issuer
update approved.

CTLS_CARD_BLOCK (210) 6A81 error card block.

CTLS_SEL_FILE_INVALID (211) 6283 error Selected file
invalidated.

 Programmers Guide Girgit

 115
 © Verifone Inc. All rights reserved.

EMV_SEE_PHONE (150) PayPass result, please
check the result on
phone.

QPBOC_KERNAL_INIT_FAILED (301) CTLS kernel
initialization failed.

data A data Bundle containing additional result-associated information.

 TC_DATA(String) The string of TC; use getAppTLVList() to get it.

TC data include "9F26, 9F27, 9F10, 9F37,
9F36, 95, 9A, 9C, 9F02, 5F2A, 82, 9F1A,
9F03, 9F33, 9F34, 9F35, 9F1E, 84, 9F09,
9F41, 9F63, 91")

REVERSAL_DATA(String) The string of reversal data.

ERROR(String) The error description (from the result of EMV).

SIGNATURE(boolean) Specifies whether a signature is required when
result is "CTLS_TC (204)".

CTLS_CVMR(int) Provides the Cardholder Verification Method (CVM)
result for CTLS when result is "CTLS_TC (204)".

 0: NO_CVM.

1: CVM_PIN.

2: CVM_SIGN.

3: CVM_CDCVM.

CARD_TYPE(int) Indicates the type of card processed via CTLS.

 0: EMV card.

1: Magnetic stripe card.

2: Other.

 Programmers Guide Girgit

 116
 © Verifone Inc. All rights reserved.

SUB_ERROR(int) A field queried when receiving the CTLS_CONT
(205) result.

 Error
Code

Error
Type

Description

0: NONE. None.

7: M1_CARD_UNSUPP

ORT_EMV_ERROR

[M1Sn] M1
card not
supported
in EMV
process.

8: FELICA_CARD_UNSU

PPORT_EMV_ERROR

EMV not
supported
Felica card.

9: DESFIRE_CARD_UNSU

PPORT_EMV_ERROR

[DesFireSN]
DesFire
card not
supported
in EMV
process.

CARD_SN(String) This is only applicable for NFC cards; could be
empty depending on card type.

Return Values

void

See Also

Refer to IEMV.getEMVData() method under Section 2.2.10.

 Programmers Guide Girgit

 117
 © Verifone Inc. All rights reserved.

onGetCTLSAppPriority()

This method retrieves the current priority order of applications available on a smart card
during a CTLS transaction.

When this method is invoked, it analyzes the list of applications provided through the
Bundle appList parameter. The method then returns an array of integers, where each
integer represents the explicit priority for the corresponding applications. The priority can
be modified via the appList parameter.

NOTE
The application can set the card priority only if the
ctlsPriority(byte) parameter under IEMV.startEMV()
method is set to 0xFF.

Prototype

int[] com.vfi.smartpos.deviceservice.aidl.EMVHandler.onGetCTLSAppPriority (in

List< Bundle > appList)

Parameters

appList A collection of contactless application list, each representing
applications available in smartcard. The list contains the following
details of the CTLS application:

 aidName(String) TAG9F12 Application Preferred Name.

aid(String) Application Identifier. It is a unique
identifier that distinguishes each
application.

aidPriority(int) TAG87 Application Priority Indicator.

Return Values

Returns an array of integers containing the card application priorities.

 Programmers Guide Girgit

 118
 © Verifone Inc. All rights reserved.

For example, if CTLS priority is set as 0xFF in IEMV.startEmv(), then the method will return
values similar to the following:

‘{0x04, 0x01, 0x02, 0x03}’: This indicates that application 4 has the highest priority,
followed by application 1, then 2, and finally 3.

0x01- Visa

0x02- Mastercard

0x03- Amex

0x04- MCCS debit

See Also

Refer to IEMV.startEMV() method under Section 2.2.10.

2.2.9 IDeviceInfo

Package: com.vfi.smartpos.deviceservice.aidl.IDeviceInfo

Overview:

This interface provides several methods for effectively managing and retrieving information about a
device. It provides a collection of public member functions that allow retrieval of various device
attributes, management of system settings, and monitoring of device power status.

Public Member Functions:

Return Type Method

String getSerialNo ()

String getIMSI ()

String getIMEI ()

 Programmers Guide Girgit

 119
 © Verifone Inc. All rights reserved.

String getICCID ()

String getManufacture ()

String getModel ()

String getAndroidOSVersion ()

String getAndroidKernelVersion ()

String getROMVersion ()

String getFirmwareVersion ()

String getHardwareVersion ()

boolean updateSystemTime (String date, String time)

boolean setSystemFunction (Bundle bundle)

TusnData getTUSN (int mode, in byte[] input)

String getPN ()

void setPowerStatus (boolean status)

String getRamTotal ()

String getRamAvailable ()

String getRomTotal ()

String getRomAvailable ()

String getMobileDataUsageTotal ()

String getBootCounts ()

String getPrintPaperLen ()

String getMagCardUsedTimes ()

String getSmartCardUsedTimes ()

 Programmers Guide Girgit

 120
 © Verifone Inc. All rights reserved.

String getCTLSCardUsedTimes ()

String getBatteryTemperature ()

String getBatteryLevel ()

String getK21Version ()

String getMEID ()

String getTamperCode ()

String getServiceVersion ()

Bundle getKernelVersion ()

String getCertificate (int mode)

String getBatteryChargingTimes ()

int getDeviceStatus (in Bundle bundle)

String getButtonBatteryVol ()

Bundle getDeviceInfo ()

Member Function Documentation:

getSerialNo()

This method is called to retrieve the unique Serial Number (SN) of the device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getSerialNo ()

Parameters

None.

 Programmers Guide Girgit

 121
 © Verifone Inc. All rights reserved.

Return Values

A string value representing the unique SN of the device.

getIMSI()

This method is called to retrieve the International Mobile Subscriber Identity (IMSI) for a
device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getIMSI ()

Parameters

None.

Return Values

A string value representing the IMSI of the device.

getIMEI()

This method is called to retrieve the International Mobile Equipment Identity (IMEI) of a
device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getIMEI ()

Parameters

None.

Return Values

 Programmers Guide Girgit

 122
 © Verifone Inc. All rights reserved.

A string value representing the IMEI of the device.

getICCID()

This method is called to retrieve the Integrated Circuit Card Identifier (ICCID) of a SIM card
in the device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getICCID ()

Parameters

None.

Return Values

A string value representing the ICCID. The ICCID includes up to 19 digits and is unique to
each SIM card.

getManufacture()

This method is called to retrieve the manufacturer of the device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getManufacture ()

Parameters

None.

Return Values

A string value representing the manufacturer of the device.

 Programmers Guide Girgit

 123
 © Verifone Inc. All rights reserved.

getModel()

This method is called to retrieve the model’s name of the device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getModel ()

Parameters

None.

Return Values

A string value representing the device’s model name.

getAndroidOSVersion()

This method is called to retrieve the android operating system (OS) version currently
running on the device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getAndroidOSVersion ()

Parameters

None.

Return Values

A string value representing the android OS version of the device.

 Programmers Guide Girgit

 124
 © Verifone Inc. All rights reserved.

getAndroidKernelVersion()

This method is called to retrieve the android kernel version of the device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getAndroidKernelVersion

()

Parameters

None.

Return Values

A string value representing the android kernel version of the device.

 Programmers Guide Girgit

 125
 © Verifone Inc. All rights reserved.

getROMVersion()

This method is called to retrieve the android ROM version of the device

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getROMVersion ()

Parameters

None.

Return Values

A string value representing the ROM version of the device.

getFirmwareVersion()

This method is called to retrieve the Firmware version currently running on the device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getFirmwareVersion ()

Parameters

None.

Return Values

A string value representing the firmware version of the device.

 Programmers Guide Girgit

 126
 © Verifone Inc. All rights reserved.

getHardwareVersion()

This method is called to retrieve the Hardware version of the device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getHardwareVersion ()

Parameters

None.

Return Values

A string value representing the hardware version of the device.

updateSystemTime()

This method is called to update the system’s date and time on the device.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.updateSystemTime (String

date, String time)

Parameters

date A string representing the date format YYYYMMDD user wants to set
on the device.

time A string representing the time format HHMMSS user wants to set
on the device.

Return Values

A Boolean value:

 Programmers Guide Girgit

 127
 © Verifone Inc. All rights reserved.

true: Indicates that the date and time were successfully updated.

false: Indicates that the update operation failed.

setSystemFunction()

This method is called to set specific system functions based on the data passed in the
bundle.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.setSystemFunction (in

Bundle bundle)

Parameters

bundle The Bundle contains specific system functions to perform.

 HOMEKEY(Boolean) Indicates whether to enable or
disable the Home key function.

STATUSBARKEY(Boolean) Indicates whether to enable or
disable the Status bar key function
in the drop-down menu.

Return Values

A Boolean value:

true: Indicates that the operation was successful.

false: Indicates that the operation failed.

 Programmers Guide Girgit

 128
 © Verifone Inc. All rights reserved.

getTUSN()

This method is called to retrieve the Terminal Unique Serial Number (TUSN) of a UnionPay
terminal.

Prototype

TusnData com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getTUSN (int mode,

in byte[] input)

Parameters

mode An integer that specifies mode for retrieving the TUSN. The mode
parameter is reserved and must be set to 0.

input Refers to the random number involved in the calculation when
calculating MAC for TUSN. The allowed range is 4 to 10 bytes.

Return Values

Returns TUSN data which includes Terminal Type, MAC and TUSN successfully; returns null
if failed.

getPN()

This method is called to retrieve the PN associated with a device (such as a UnionPay
terminal).

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getPN ()

Parameters

None.

Return Values

 Programmers Guide Girgit

 129
 © Verifone Inc. All rights reserved.

A string value representing the PN.

setPowerStatus()

This method is called to set the operational status of the power key on the device. It allows
you to enable or disable the power key's functionality.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.setPowerStatus (boolean

status)

Parameters:

status A Boolean indicating the power key status.

 true: Disable the power key.

false: Enable the power key.

Return Values

void

getRamTotal()

This method is called to retrieve the total amount of Random Access Memory (RAM) on
the device. The returned value is expressed in bytes and represents the overall memory
capacity available for the application.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getRamTotal ()

Parameters

 Programmers Guide Girgit

 130
 © Verifone Inc. All rights reserved.

None.

Return Values

A string value representing the overall RAM capacity of the device in bytes.

getRamAvailable()

This method is called to retrieve the amount of available RAM (in bytes) on the device that
is currently free for use.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getRamAvailable ()

Parameters

None.

Return Values

A string value representing the available RAM capacity of the device.

getRomTotal()

This method is called to retrieve the total amount of Flash Read-Only Memory (ROM)
available on the device. The returned value is expressed in bytes and represents the overall
storage capacity.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getRomTotal ()

Parameters

None.

 Programmers Guide Girgit

 131
 © Verifone Inc. All rights reserved.

Return Values

A string value representing the overall ROM capacity of the device in bytes.

getRomAvailable()

This method is called to retrieve the amount of available Flash ROM memory (in bytes)
currently free for use.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getRomAvailable ()

Parameters

None.

Return Values

A string value representing the available ROM capacity of the device in bytes.

getMobileDataUsageTotal()

This method is called to retrieve the total mobile data usage of the device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getMobileDataUsageTotal

()

Parameters

None.

Return Values

 Programmers Guide Girgit

 132
 © Verifone Inc. All rights reserved.

A string value representing the total mobile data usage of the device in bytes.

getPrintPaperLen()

This method is called to retrieve the length of print paper.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getPrintPaperLen ()

Parameters

None.

Return Values

A string value representing the length of the print paper unit in millimeter (mm).

getMagCardUsedTimes()

This method is called to track and retrieve the number of times the magnetic card reader
has been used on the device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getMagCardUsedTimes ()

Parameters

None.

Return Values

A string value representing the number of times a magnetic card reader has been used.

 Programmers Guide Girgit

 133
 © Verifone Inc. All rights reserved.

getSmartCardUsedTimes()

This method is called to track and retrieve the number of times a smart card reader has
been used on the device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getSmartCardUsedTimes ()

Parameters

None.

Return Values

A string value representing the number of times a smart card reader has been used.

getCTLSCardUsedTimes()

This method is called to track and retrieve the number of times a contactless (CTLS) card
reader has been used on the device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getCTLSCardUsedTimes ()

Parameters

None.

Return Values

A string value representing the number of times a CTLS card reader has been used.

 Programmers Guide Girgit

 134
 © Verifone Inc. All rights reserved.

getBatteryTemperature()

This method is called to retrieve the temperature of the device’s battery.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getBatteryTemperature ()

Parameters

None.

Return Values

A string value representing the temperature of the device’s battery.

getBatteryLevel()

This method is called to retrieve the current charging level of the device's battery. The
return value provides a clear indication of the battery's remaining capacity.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getBatteryLevel ()

Parameters

None.

Return Values

A string value representing the current charging level of the device’s battery.

 Programmers Guide Girgit

 135
 © Verifone Inc. All rights reserved.

getK21Version()

This method is called to retrieve the K21 version specific to the device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getK21Version ()

Parameters

None.

Return Values

A string value representing the K21 version of the device.

getMEID()

This method is called to retrieve the Mobile Equipment Identifier (MEID) of the device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getMEID ()

Parameters

None.

Return Values

A string value representing the MEID of the device.

 Programmers Guide Girgit

 136
 © Verifone Inc. All rights reserved.

getTamperCode()

This method is called to retrieve the tamper detection code for the device. This code
indicates if the device has been tampered.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getTamperCode ()

Parameters

None.

Return Values

A string value representing the tamper detection code.

getServiceVersion()

This method is called to retrieve the service version of the device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getServiceVersion ()

Parameters

None.

Return Values

A string that represents the service version of the device.

 Programmers Guide Girgit

 137
 © Verifone Inc. All rights reserved.

getKernelVersion()

This method is called to retrieve the version of the kernel currently running on the device.

Prototype

Bundle com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getKernelVersion ()

Parameters

None.

Return Values

A Bundle object containing various keys with string values related to payment types
below:

SmartEMV(String) Represents Smart EMV payment method.

Visa(String) Represents Visa payment method.

MasterCard(String) Represents MasterCard payment method.

JCB(String) Represents JCB payment method.

AMEX(String) Represents American Express payment method.

Discover(String) Represents Discover payment method.

QuickPass(String) Represents QuickPass payment method.

GemaltoPure(String) Represents Gemalto Pure payment method.

 Programmers Guide Girgit

 138
 © Verifone Inc. All rights reserved.

getCertificate()

This method is called to retrieve and display the digital certificate of the device based on
the specified mode.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getCertificate (int mode)

Parameters

mode An integer that specifies the mode for retrieving the certificate:

 O: Retrieve the certificate for sponsor digest.

Any other value: Not supported; return an empty string.

Return Values

A string value representing the value of the digital certificate.

getBatteryChargingTimes ()

This method is called to retrieve the total duration for which the device's battery has been
in a charging state.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo. getBatteryChargingTimes
()

Parameters

None.

Return Values

 Programmers Guide Girgit

 139
 © Verifone Inc. All rights reserved.

A string value representing the duration of the battery’s charging time.

getDeviceStatus()

This method checks the status of various device components such as printers, card
readers, PIN pad, cameras, and SD cards.

Prototype

bundle com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getDeviceStatus (in

Bundle bundle)

Parameters

bundle A Bundle object that contains a key-value pair, where the key is
"DeviceType" and the value is a string specifying the type of device. The
device types are predefined, and you need to provide one of the
following types:

 PRINTER: For checking the status of a
printer.

ICCARDREADER_SLOT1: For the first ICC card reader slot.

ICCARDREADER_SLOT2: For the second ICC card reader
slot.

RFCARDREADER: For an RFID card reader.

SAMCARDREADER_SLOT1: For the first SAM card reader slot.

SAMCARDREADER_SLOT2: For the second SAM card reader
slot.

PINPAD: For checking the status of a PIN
pad.

 Programmers Guide Girgit

 140
 © Verifone Inc. All rights reserved.

CAMERA_FRONT: For checking the status of the
front camera.

CAMERA_REAR: For checking the status of the rear
camera.

SDCARD: For checking the status of the SD
card.

Return Values

An integer value to indicate the device working status:

0: The device is normal.

-1: The device is abnormal.

getButtonBatteryVol()

The method is used to retrieve the current voltage level of the button battery, a coin cell
battery, which is often used to power certain hardware components when the device is
turned off.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getButtonBatteryVol ()

Parameters

None.

Return Values

A string value representing the voltage of the button battery. It indicates the measured
voltage unit in volts (V).

 Programmers Guide Girgit

 141
 © Verifone Inc. All rights reserved.

getDeviceInfo()

This method is used to retrieve a Bundle containing information about the device. It
collects important identifiers and details related to the device, such as serial number,
model, firmware version, and more. The collected data can be used for device
management, diagnostics, and configuration purposes.

Prototype

Bundle com.vfi.smartpos.deviceservice.aidl.IDeviceInfo.getDeviceInfo ()

Parameters

None.

Return Values

A Bundle containing the following key-value pairs:

SN: Serial Number of the device.

PN: Product Number.

IMSI: International Mobile Subscriber Identity (for mobile network identification).

IMEI: International Mobile Equipment Identity (for mobile device identification).

MEID: Mobile Equipment Identifier.

manufacture: The manufacturer of the device.

deviceModel: The model of the device.

androidOsVer: The version of Android OS the device is running.

androidKernalVer: The version of the Android kernel.

romVer: The version of the device’s ROM.

firmwareVer: The version of the device’s firmware.

 Programmers Guide Girgit

 142
 © Verifone Inc. All rights reserved.

hardwareVer: The version of the device’s hardware.

k21Ver: Version of K21 (specific to the device, possibly related to a proprietary
software or firmware).

GirgitSerivceVer: Version of Girgit Service (likely related to some system service
version).

VRKSn: VRK Serial Number (a specific identifier, perhaps for a part or accessory).

SponsorID: Sponsor ID (used in cases where a sponsor or specific partner is
associated with the device).

2.2.10 IEMV

Package: com.vfi.smartpos.deviceservice.aidl.IEMV

Overview:

The IEMV interface provides essential methods for interacting with an EMV-compliant card reader,
facilitating a secure and efficient payment process. This interface includes functions for processing
transactions, reading card data, and handling user interactions.

Public Member Functions:

Modifier and Type Method

void checkCard (in Bundle cardOption, int timeout, CheckCardListener listener)

void stopCheckCard ()

void startEMV (int processType, in Bundle intent, EMVHandler handler)

void abortEMV ()

 Programmers Guide Girgit

 143
 © Verifone Inc. All rights reserved.

boolean updateAID (int operation, int aidType, String aid)

boolean updateRID (int operation, String rid)

void importAmount (long amount)

void importAppSelection (int index)

void importPin (int option, in byte[] pin)

void importCertConfirmResult (int option)

void importCardConfirmResult (boolean pass)

void importOnlineResult (in Bundle onlineResult, OnlineResultHandler handler)

void setEMVData (in List< String > tlvList)

String getAppTLVList (in String[] taglist)

byte[] getCardData (String tagName)

String getEMVData (String tagName)

String[] getAID (int type)

String[] getRID ()

int getProcessCardType ()

 Programmers Guide Girgit

 144
 © Verifone Inc. All rights reserved.

void registerKernelAID (in Map customAidList)

void inputOnlineResult (in Bundle onlineResult, OnlineResultHandler handler)

boolean updateVisaAPID (int operation, in DRLData drlData)

boolean updateCardBlk (int operation, in BLKData blkData, int type)

int emvProcessingRequestOnline ()

String[] getCAPK (int type)

void enableTrack (int trkNum)

boolean setCtlsPreProcess (in Bundle param)

void checkCardMs (in Bundle cardOption, long timeout, CheckCardListener listener)

Member Function Documentation:

checkCard()

The checkCard() method is used to detect and read the card before the actual EMV
transaction can proceed. This step is performed when the user inserts, swipes, or taps the
card on a reader.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IEMV.checkCard (in Bundle cardOption,

int timeout, CheckCardListener listener)

Parameters

 Programmers Guide Girgit

 145
 © Verifone Inc. All rights reserved.

cardOption Indicates the types of cards that the reader supports. It includes:

 supportMagCard(boolean) Indicates whether the card
reader supports magnetic
cards.

supportSmartCard(boolean) Indicates whether the card
reader supports smart cards.

supportCTLSCard(boolean) Indicates whether the card
reader supports CTLS cards.

timeout The timeout duration in seconds.

listener A callback listener that gets triggered when a card is detected, refer
to CheckCardListener.

Return Values

void

See Also

• stopCheckCard()

• startEMV()

• Refer to CheckCardListener interface under Section 2.2.1.

stopCheckCard()

This method is used to stop any ongoing card checking processes, such as reading card
data or verifying card details.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IEMV.stopCheckCard ()

Parameters

 Programmers Guide Girgit

 146
 © Verifone Inc. All rights reserved.

None.

Return Values

void

See Also

• checkCard()

• startEMV()

• Refer to CheckCardListener interface under Section 2.2.1.

startEMV()

The startEMV() method is used to initiate and manage an EMV transaction after the card
has been detected (inserted, tapped, or swiped). It handles the transaction phases such as
authorization, PIN entry, and other critical transaction-related activities.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IEMV.startEMV (int processType,

in Bundle intent, EMVHandler handler)

Parameters

processType Specifies the type of EMV process to be initiated.

 1: EMV processing.

2: EMV simplified processing.

intent A bundle that holds transaction settings.

 cardType(int) Specifies the card type.

CARD_INSERT(0) For smart IC card.

CARD_RF(1) For CTLS card.

file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_i_e_m_v.html%23a9ebeb9394d3cc108c7e5472092050016
file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_i_e_m_v.html%23a40f50831d3bb06219449e0344dc97bbe

 Programmers Guide Girgit

 147
 © Verifone Inc. All rights reserved.

crdDetectTimeOut(long) Indicates the maximum time allowed
for a CTLS transaction to complete.

transProcessCode(byte) A 1Byte code translation type (9C first
two digits of the ISO 8583:1987
Processing Code).

authAmount(long) The transaction amount that requires
authorization.

isSupportSM(boolean) Indicates support for the Secure
Messaging (SM).

isForceOnline(boolean) If true, the transaction will be
processed online.

merchantName(String) The name of the merchant (variable
bytes).

merchantId(String) The merchant’s ID (15 bytes).

terminalId(String) The terminal’s ID (8 bytes).

transCurrCode(String) Currency code (5F2A). If not set, the
kernel will attempt to find it in the AID
string.

otherAmount(String) Sets the value for the Other Amount
(9F03).

panConfirmTimeOut(int) Sets the timeout for PAN confirmation
(default is 60 seconds, applicable only
for smart cards).

appSelectTimeOut(int) Sets the timeout for application
selection (default is 60 seconds,
applicable only for smart cards).

traceNo(String) The trace number (variable bytes).

 Programmers Guide Girgit

 148
 © Verifone Inc. All rights reserved.

ctlsPriority(byte) CTLS application priority (optional).
For example, b0 for MyDebit; b1 to b7
are to be defined. Set this value as
0xFF for setting from application.

isForceOffline(boolean) Indicates if the transaction should be
forced offline. Default is false (only for
AMEX kernel).

transSeqCounter(int) Transaction sequence counter (9F41).
Valid range: 0 <= transSeqCounter <=
99999999.

handler The callback handler manages events during the transaction process,
refer to EMVHandler.

Return Values

void

See Also

• startEMV()

• abortEMV()

abortEMV()

This method is used to terminate any ongoing EMV transaction process.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IEMV.abortEMV ()

Parameters

None.

Return Values

 Programmers Guide Girgit

 149
 © Verifone Inc. All rights reserved.

void

updateAID()

This method is used to update the AID for payment applications in a payment processing
system. This method allows user to perform three main operations (like add, remove, and
clear all AIDs) related to the AIDs.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IEMV.updateAID (int operation,

int aidType, String aid)

Parameters

operation Specifies the type of operation to perform on the AID.

 1: (append) Adds a new AID to the existing list of applications.

2: (remove) Removes a specific AID from the list.

3: (clear all) Clears all AIDs, resetting the application settings.

aidType Indicates the type of AID being managed.

 1: (contact) Refers to a traditional smart card application that
requires physical contact with the reader.

2: (contactless) Refers to applications that utilize contactless
technology, allowing transactions through NFC or Radio
Frequency Identification (RFID).

aid The actual AID to be added, removed, or cleared. This identifier is crucial
for selecting the appropriate payment application during transactions.

Return Values

A Boolean value:

 Programmers Guide Girgit

 150
 © Verifone Inc. All rights reserved.

true: Indicates that the operation was successful.

false: Indicates that the operation failed.

See Also

getAID()

updateRID()

This method is used to update a Record Identifier (RID) associated with a Certificate
Authority (CA) public key in a payment processing system. This method allows user to
perform three main operations (like add, remove, and clear all RIDs) related to the RIDs.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IEMV.updateRID (int operation,

String rid)

Parameters

operation Specifies the type of operation to perform on the RID.

 1: (append) Add a new RID associated with a new CA public
key.

2: (remove) Remove an existing RID for a CA public key.

3: (clear all) Clears all RIDs, resetting the application settings.

rid The actual RID that corresponds to the CA public key being updated.

Return Values

A Boolean value:

true: Indicates that the operation was successful.

 Programmers Guide Girgit

 151
 © Verifone Inc. All rights reserved.

false: Indicates that the operation failed.

See Also

getRID()

importAmount()

This method is used to import a specified amount for processing within an electronic
mobile payment system.

NOTE
This method has been deprecated.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IEMV.importAmount (long amount)

Parameters

amount Indicates a monetary value to be imported, specified in the smallest
currency unit.

Return Values

void

See Also

startEMV()

 Programmers Guide Girgit

 152
 © Verifone Inc. All rights reserved.

importAppSelect()

This method is used to select a specific application from a multi-application card. It allows
the system to determine which payment application to use for processing a transaction
based on the provided index.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IEMV.importAppSelection (int index)

Parameters

index The index of the application to select.

 Start from 1: This indicates the first application in the list.

0: Indicates a cancel action.

Return Values

void

See Also

Refer to EMVHandler.onSelectApplication() method under Section 2.2.8.

importPin()

This method is used to import a PIN for transaction authentication in electronic mobile
payments.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IEMV.importPin (int option,

in byte[] pin)

Parameters

 Programmers Guide Girgit

 153
 © Verifone Inc. All rights reserved.

option Specifies the action to be taken regarding the PIN.

 CANCEL (0): Indicates that the PIN entry should be cancelled.

CONFIRM (1): Indicates that the PIN entry should be confirmed
and processed.

pin An array of bytes that indicates the PIN data.

Return Values

void

See Also

Refer to EMVHandler.onRequestInputPIN() method under Section 2.2.8.

importCertConfirmResult()

This method is part of the EMV transaction flow, specifically related to the process of
certificate validation. Certificates are used to ensure the authenticity of the card, issuer, or
transaction during the payment process. This method confirms the result of certificate
validation, signalling whether the certificate verification was successful or not.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IEMV.importCertConfirmResult (int

option)

Parameters

option Indicates the result of the cardholder verification process.

 CANCEL (0): Indicates that the verification process was
cancelled (bypassed).

CONFIRM (1): Indicates that the verification was successful and
confirmed.

 Programmers Guide Girgit

 154
 © Verifone Inc. All rights reserved.

 NOTMATCH (2): Indicates that the entered information does not
match the cardholder's data.

Return Values

void

See Also

Refer to EMVHandler.onConfirmCertInfo() method under Section 2.2.8.

importCardConfirmResult()

This method is part of the EMV transaction flow and is used to confirm the result of the
cardholder verification process. This step is critical in ensuring that the person using the
card is authorized to complete the transaction, through methods such as PIN entry,
signature, or biometric authentication.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IEMV.importCardConfirmResult (boolean

pass)

Parameters

pass Indicates the outcome of the cardholder verification.

 true: The cardholder verification was successful.

false: The cardholder verification failed.

Return Values

void

See Also

Refer to EMVHandler.onConfirmCardInfo() method under Section 2.2.8.

 Programmers Guide Girgit

 155
 © Verifone Inc. All rights reserved.

importOnlineResult()

This method is used to import and process the response received from an online
transaction in electronic mobile payment systems, allowing the system to take appropriate
actions based on the result.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IEMV.importOnlineResult (in Bundle

onlineResult, OnlineResultHandler handler)

Parameters

onlineResult A Bundle that contains the results of the online operation. It includes:

 isOnline(boolean) Indicates whether the transaction was
processed online.

respCode(String) The response code returned from the online
operation, indicating the status of the
transaction.

authCode(String) The authorization code provided for the
transaction, if applicable.

field55(String) The response data for field 55, which may
contain additional transaction details or
messages.

handler This is an instance of an interface intended to manage the results of the
online transaction. Refer to OnlineResultHandler under Section 2.2.7.

Return Values

void

See Also

 Programmers Guide Girgit

 156
 © Verifone Inc. All rights reserved.

Refer to EMVHandler.onRequestOnlineProcess() method under Section 2.2.8.

setEMVData()

This method is essential for setting or modifying EMV kernel data during the transaction
process for Dynamic Currency Conversion (DCC). It is especially applicable in the EMV
flow during callbacks such as onConfirmCardInfo() or onRequestInputPIN(), and it
specifically supports smart card transactions. For example:

• Initially, user might set a currency code (e.g., 5F2A=0156). If user need to change
this during the onConfirmCardInfo() callback (e.g., to 5F2A=0116), user can use this
method to update the tag.

• User may start with an initial authorization amount (e.g., authAmount=100 using tag

9F02). During the onConfirmCardInfo() callback, user can modify this amount as
needed.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IEMV.setEMVData (in List< String >

tlvList)

Parameters

tlvList A list of strings formatted in Tag-Length-Value (TLV) structure that
represents the EMV data user wants to set or modify. Each entry must
comply with the TLV format for proper processing.

Return Values

void

getAppTLVList()

This method is used to retrieve kernel data in the TLV format from the PBOC kernel,
specifically for the EMV applications.

 Programmers Guide Girgit

 157
 © Verifone Inc. All rights reserved.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IEMV.getAppTLVList (in String[]

taglist)

Code Snippet

{

 String[] strlist = {"9F33", "9F40", "9F10", "9F26", "95", "9F37", "9F1E",

"9F36",

 "82", "9F1A", "9A", "9B", "50", "84", "5F2A", "8F"};

 String strs = iemv.getAppTLVList(strlist);

 }

Parameters

taglist An array of strings representing the specific tags user wants to query.

Return Values

Returns either of the two values:

TLV Format: The method returns data in the TLV format.

Null: Indicating that there is no response available.

getCardData()

This method is called to retrieve the EMV card data based on a specified tag identifier.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IEMV.getCardData (String tagName)

Parameters

tagName The name of the tag for which the data is requested.

 Programmers Guide Girgit

 158
 © Verifone Inc. All rights reserved.

Return Values

The EMV data associated with the specified tag name.

getEMVData()

This method is used to retrieve the specific EMV data, such as card number, validity date,
card serial number, and other relevant details.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IEMV.getEMVData (String tagName)

Parameters

tagName The name of the tag for which the EMV data is requested. It includes:

 PAN card No. PAN card number.

TRACK2 Track data from Track 2 of the magnetic stripe.

CARD_SN Card Serial Number.

EXPIRED_DATE Expiration date of the card.

DATE Current date.

TIME Current time.

BALANCE Current balance.

CURRENCY Currency code associated with the card.

Return Values

A string value representing the requested EMV data. If the specified tag is not available at
the current EMV processing stage or if there is an error retrieving the data, the method will
return null.

 Programmers Guide Girgit

 159
 © Verifone Inc. All rights reserved.

See Also

getCardData()

getAID()

This method is used to retrieve the AID based on a specified application type during the
EMV transactions.

Prototype

String[] com.vfi.smartpos.deviceservice.aidl.IEMV.getAID (int type)

Code Snippet

 @brief get the AID parameter

 @param type - 1-contact aid 2-contactless aid

 @return null if the AID is unavailable

 \code

 demo returns from getAID(1)

{"9F0607A0000000031010DF0101009F09020140DF1105C000000000DF12050000000000DF13050

0000000009F1B0400000000DF1504000000009F7B06000000000000DF1906000000000000DF2006

0099999999995F2A0201569F1A0201569F3303E0F9C89F4005FF00F0A0019F6604260000809F350

122DF150400000000DF160101DF170101DF14039F3704DF1801009F1D00",

"9F0607A0000000032010DF0101009F09020140DF1105D84004A800DF1205D84000F800DF130500

100000009F1B0400000000DF1504000000009F7B06000000000000DF1906000000000000DF20060

099999999995F2A0201569F1A0201569F3303E0F9C89F4005FF00F0A0019F6604260000809F3501

22DF150400000000DF160101DF170101DF14039F3704DF1801009F1D00"

Parameters

type The type of application for which the AID is requested.

 1: Contact AID for EMV cards that require physical contact.

2: Contactless AID for EMV cards that support contactless
transactions.

Return Values

 Programmers Guide Girgit

 160
 © Verifone Inc. All rights reserved.

A string representing the AID of the application.

See Also

updateAID()

getRID()

This method is used to retrieve the RID associated with the EMV transaction.

NOTE
This interface method has been deprecated.

Prototype

String[] com.vfi.smartpos.deviceservice.aidl.IEMV.getRID ()

Parameters

None.

Return Values

Returns either of the two values:

RID: The method returns the available RID.

Null: Indicating that the RID is unavailable.

See Also

getCAPK()

 Programmers Guide Girgit

 161
 © Verifone Inc. All rights reserved.

getProcessCardType()

This method is used to obtain the CTLS card type (In onRequestOnlineProcess callback you can
use this interface to obtain the CTLS card type) during an EMV transaction.

NOTE
This interface method has been deprecated.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IEMV.getProcessCardType ()

Parameters

None.

Return Values

The type of card currently being processed during an EMV transaction.

 0: No Type Indicates an unknown or unsupported card type.

1: JCB_CHIP Represents a JCB chip card.

2: JCB_MSD Represents a JCB magnetic stripe card.

3: JCB_Legcy Represents a legacy JCB card.

4: VISA_w1 Represents a Visa card using the w1 processing.

5: VISA_w3 Represents a Visa card using the w3 processing.

6: Master_EMV Represents a MasterCard EMV chip card.

7: Master_MSD Represents a MasterCard magnetic stripe card.

8: qPBOC_qUICS. Represents a card using qPBOC/qUICS standards.

 Programmers Guide Girgit

 162
 © Verifone Inc. All rights reserved.

See Also

Refer to EMVHandler.onRequestOnlineProcess() method under Section 2.2.8.

registerKernelAID()

This method is used to set custom AID for the EMV kernel before initiating an EMV
transaction with startEMV().

Prototype

void com.vfi.smartpos.deviceservice.aidl.IEMV.registerKernelAID (in Map

customAidList)

Parameters

customAidList An Integer representing the kernel ID associated with that AID, refer to
CTLSKernelID for valid ID’s.

Return Values

void

See Also

Refer to CTLSKernelID class under Section 2.3.9.

inputOnlineResult()

This method allows a payment application to import and process the online response
related to a PIN input operation.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IEMV.inputOnlineResult (in Bundle

onlineResult, OnlineResultHandler handler)

 Programmers Guide Girgit

 163
 © Verifone Inc. All rights reserved.

Parameters

onlineResult A Bundle that contains the results of the online operation. It includes:

 isOnline(boolean) Indicates whether the transaction was
processed online.

respCode(String) The response code returned from the online
operation, indicating the status of the
transaction.

authCode(String) The authorization code provided for the
transaction, if applicable.

field55(String) The response data for field 55, which may
contain additional transaction details or
messages.

handler An instance of OnlineResultHandler that processes the results of the
online operation. Refer to OnlineResultHandler.

Return Values

void

See Also

Refer to EMVHandler.onRequestOnlineProcess() method under Section 2.2.8.

updateVisaAPID()

This method is used to perform operations related to Visa transactions. It updates or
manages data associated with a Visa transaction based on the provided parameters.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IEMV.updateVisaAPID (int operation,

in DRLData drlData)

 Programmers Guide Girgit

 164
 © Verifone Inc. All rights reserved.

Parameters

operation Specifies the type of operation to perform on the Visa transaction data:

 1: (append) This operation adds new data to the existing
transaction information.

2: (clear) This operation clears or resets the existing data
associated with the transaction.

DRLData Represents an instance of the DRLData class, which contains all
necessary information related to the Visa transaction.

Return Values

A Boolean value:

true: if the operation was successful.

false: if the operation failed.

See Also

Refer to DRLData class under Appendix A Supporting Classes 3.

updateCardBlk()

This method is used to manage and update data related to card blocking operations in a
payment processing system.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IEMV.updateCardBlk (int operation,

in BLKData blkData, int type)

Parameters

operation Specifies the action to perform:

 Programmers Guide Girgit

 165
 © Verifone Inc. All rights reserved.

 1: (append) Adds new blocking data to the existing card
information.

2: (clear) Removes any existing blocking data associated with
the card.

blkData An instance of the BLKData class that contains the data related to the
card blocking operation.

type Indicates the type of card being blocked:

 1: contact (smart card) for traditional smart cards that require
physical contact for transactions.

2: contactless for cards that support contactless transactions,
allowing for quicker payments without physical contact.

Return Values

A Boolean value:

true: if the operation was successful.

false: if the operation failed.

See Also

Refer to BLKData class under Appendix A Supporting Classes 1.

emvProcessingRequestOnline()

This method is used to initiate an online transaction request for a smart card immediately
after the cardholder has selected a payment application on the terminal.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IEMV.emvProcessingRequestOnline ()

 Programmers Guide Girgit

 166
 © Verifone Inc. All rights reserved.

Parameters

None.

Return Values

Returns either of the two values:

0: Indicates success, meaning the online request was processed successfully.

other values (non-zero): Indicates failure, which may represent various error
conditions (e.g., communication errors, authorization issues).

getCAPK()

This method is used to retrieve the Certificate Authority Public Key (CAPK) corresponding
to a specified type, which is essential for secure EMV transaction processing.

Prototype

String[] com.vfi.smartpos.deviceservice.aidl.IEMV.getCAPK (int type)

Parameters

type Specifies the type of CAPK to retrieve:

 1: Contact AID for EMV cards that require physical contact.

2: Contactless AID for EMV cards that support contactless
transactions.

Return Values

Returns either of the two values:

CAPK: The method returns the available CAPK.

Null: Indicating that the CAPK is unavailable.

 Programmers Guide Girgit

 167
 © Verifone Inc. All rights reserved.

enableTrack()

This method is used to enable a specific track of card data during transaction processing,
although this may not be strictly necessary for all operations.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IEMV.enableTrack (int trkNum)

Parameters

trkNum This parameter uses bitwise flags to determine which tracks to enable:

 bit0: If set to 1, enables Track 1.

bit1: If set to 1, enables Track 2.

 bit2: If set to 1, enables Track 3.

Return Values

void

setCtlsPreProcess()

This method is used to configure parameters for the CTLS transaction pre-processing,
preparing the terminal for contactless interactions.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IEMV.setCtlsPreProcess (in Bundle

param)

Parameters

 Programmers Guide Girgit

 168
 © Verifone Inc. All rights reserved.

param A Bundle including various settings to configure contactless transaction
processing.

 traceNo(String) The trace number for the transaction
(variable-length bytes).

transProcessCode(byte) Specifies the transaction type as a single
byte, specifically the first two digits of the
ISO 8583:1987 Processing Code (e.g., 9C).

transCurrCode(String) Currency code (e.g., 5F2A). If not set, the
kernel finds this tag in the AID string.

otherAmount(String) Sets the Other Amount value (tag 9F03),
which may represent additional fees.

authAmount(long) The authorization amount for the
transaction.

isForceOnline(boolean) Indicates if the transaction should be
forced online for authorization.

ctlsPriority(byte) CTLS application priority (optional); b0 for
MyDebit, b1 to b7 for other definitions.

sForceOffline(boolean) Indicates if the transaction should be
forced offline. Default is false.

Return Values

A Boolean value:

true: Indicates that the parameters for contactless pre-processing were
successfully set.

false: Indicates a failure in setting the parameters.

 Programmers Guide Girgit

 169
 © Verifone Inc. All rights reserved.

checkCardMs()

This method is used to initiate a non-blocking check for a magnetic stripe card, allowing
the terminal to detect card data while keeping the application responsive.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IEMV.checkCardMs (in Bundle cardOption,

long timeout, CheckCardListener listener)

Parameters

cardOption A Bundle that specifies the card types that the terminal will check for
during the magnetic stripe card detection process.

 supportMagCard(boolean) Indicates supports for magnetic
stripe cards.

supportSmartCard(boolean) Indicates support for smart cards.

 supportCTLSCard(boolean) Indicates support for CTLS cards.

timeout The timeout duration in seconds.

listener A callback interface that handles events related to card detection. Refer to
CheckCardListener.

Return Values

void

See Also

• stopCheckCard()

• startEMV()

• Refer to CheckCardListener interface under Section 2.2.1.

 Programmers Guide Girgit

 170
 © Verifone Inc. All rights reserved.

2.2.11 ISmartCardReader

Package: com.vfi.smartpos.deviceservice.aidl.ISmartCardReader

Overview:

This interface is used for interacting with smart cards, including contact cards or IC cards. This interface
provides methods to facilitate communication between applications and smart cards, enabling various
operations such as reading and writing data.

Public Member Functions:

Modifier and Type Method

boolean powerup ()

boolean powerDown ()

boolean isCardIn ()

byte[] exchangeApdu (in byte[] apdu)

boolean isPSAMCardExists ()

byte checkCardStatus ()

byte[] getPowerUpATR ()

 Programmers Guide Girgit

 171
 © Verifone Inc. All rights reserved.

Member Function Documentation:

powerUp()

This method is used to power up a smart card reader that supports various smart card
technologies, including contact and contactless cards. This method is part of an interface
that handles a broader range of smart card operations, ensuring that the reader is
initialized and ready to interact with the card once it's powered up.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.ISmartCardReader.powerUp ()

Parameters

None.

Return Values

A Boolean value:

true: Indicates that the card reader has been successfully powered up and is ready
for use.

false: Indicates a failure to power up the card reader.

See Also

powerDown()

 Programmers Guide Girgit

 172
 © Verifone Inc. All rights reserved.

powerDown()

This method is called to power off the smart card reader, ensuring it is no longer active and
conserving battery life or reducing wear on the device.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.ISmartCardReader.powerDown ()

Parameters

None.

Return Values

A Boolean value:

true: Indicates that the card reader has been successfully powered down.

false: Indicates a failure to power down the card reader.

See Also

powerup()

isCardIn()

This method is used to check whether a smart card (contact card or IC card) is currently
inserted into the card reader.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.ISmartCardReader.isCardIn ()

Parameters

 Programmers Guide Girgit

 173
 © Verifone Inc. All rights reserved.

None.

Return Values

A Boolean value:

true: Indicates that a card is currently available.

false: Indicates that a card is unavailable.

exchangeApdu()

This method is fundamental for APDU’s data communication between an application and a
smart card. This method enables the sending of commands to the card and receiving its
responses, allowing for various interactions

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.ISmartCardReader.exchangeApdu (in

byte[] apdu)

Parameters

apdu The APDU command to be sent to the smart card, structured
according to the command requirements.

Return Values

A byte array containing the response from the smart card.

Valid Response: A non-null byte array indicating the data returned by the card.

Null: Indicates that no response was received from the smart card.

 Programmers Guide Girgit

 174
 © Verifone Inc. All rights reserved.

isPSAMCardExists()

This method is used to check whether a Payment System Access Module (PSAM) card is
currently present in the card reader.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.ISmartCardReader.isPSAMCardExists ()

Parameters

None.

Return Values

A Boolean value:

true: Indicates that the PSAM card is currently in place and detected by the card
reader.

false: Indicates that the PSAM card is not in place or not detected.

checkCardStatus()

This method is called to check whether the smart card is ready for operations, powered
down, or in an error state, allowing the application to take appropriate actions based on the
card's status.

Prototype

byte com.vfi.smartpos.deviceservice.aidl.ISmartCardReader.checkCardStatus ()

Parameters

None.

 Programmers Guide Girgit

 175
 © Verifone Inc. All rights reserved.

Return Values

An integer value representing the card's status:

 0x00: Card does not exist (not detected in the reader).

0x01: Card exists (detected and ready for operations).

0x02: Card is powered on (active and ready for communication).

getPowerUpATR()

This method is used to obtain the ATR (Answer to Reset) after powering on the smart card,
which is essential for understanding how to communicate with the card.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.ISmartCardReader.getPowerUpATR ()

Parameters

None.

Return Values

A byte array representing the ATR data of the smart card.

2.2.12 IScanner

Package: com.vfi.smartpos.deviceservice.aidl.IScanner

Overview:

The IScanner interface is intended for managing the operations of barcode and QR code scanners,
allowing applications to initiate scans, receive results, and handle scanning events seamlessly.

 Programmers Guide Girgit

 176
 © Verifone Inc. All rights reserved.

Public Member Functions:

Modifier and Type Method

void startScan (in Bundle param, long timeout, ScannerListener listener)

void stopScan ()

Member Function Documentation:

startScan()

This method is called to start a scanning operation with specified parameters and process
results via a listener.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IScanner.startScan (in Bundle param,

long timeout, ScannerListener listener)

Parameters

param A collection of parameters that define how the scanning should be
performed. This can include:

 topTitleString(String) This parameter sets the title
displayed at the top of the
scanning interface. The text
alignment is centered.

upPromptString(String) This string is used as a
prompt displayed above the
scan box, providing guidance
to the user. The text alignment
is centered.

 Programmers Guide Girgit

 177
 © Verifone Inc. All rights reserved.

downPromptString(String) This prompt appears below
the scan box, further assisting
the user during the scanning
process. The text alignment is
centered.

showScannerBorder(boolean) Controls the visibility of the
scanner border and the
prompt strings.

Default Value: true (shows the
border and prompts).

When false: Hides the scanner
border and both the
upPromptString and
downPromptString.

scannerSelect(int) Selects the scanner position.

 0: Use the front scanner.

1: Use the rear scanner.

Default: If this parameter is not
provided, the method will
default to using the scanner
position specified by the
IDeviceService.getScanner()
method

timeout Sets the maximum duration in milliseconds that the scanner will
attempt to scan before timing out.

listener A callback listener that receives updates and results from the
scanning operation. This typically includes methods for successful
scans, errors, and timeouts. Refer to ScannerListener under
Section 2.2.3.

Return Values

 Programmers Guide Girgit

 178
 © Verifone Inc. All rights reserved.

void

stopScan()

This method is used to stop the current scanning session, regardless of whether a barcode or
QR code has been successfully detected.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IScanner.stopScan ()

Parameters

None.

Return Values

void

2.2.13 IPrinter

Package: com.vfi.smartpos.deviceservice.aidl.IPrinter

Overview:

This interface enables the payment applications to interact effectively with printer services on a device. It
facilitates printing tasks, allowing users to print different formats such as strings, barcodes, QR codes,
and images. It offers a clear set of methods for managing print jobs, checking printer status, and handling
printing processes.

Public Member Functions:

Modifier and Type Method

int getStatus ()

 Programmers Guide Girgit

 179
 © Verifone Inc. All rights reserved.

void setGray (int gray)

void addText (in Bundle format, String text)

void addTextInLine (in Bundle format, String lString, String mString, String rString, int mode)

void addBarCode (in Bundle format, in String barcode)

void addQrCode (in Bundle format, String qrCode)

void addQrCodesInLine (in List< QrCodeContent > qrCodes)

void addImage (in Bundle format, in byte[] imageData)

void feedline (int lines)

void startPrint (PrinterListener listener)

void startSaveCachePrint (PrinterListener listener)

void setLineSpace (int space)

void startPrintInEmv (PrinterListener listener)

int cleanCache ()

void addBmpImage (in Bundle format, in Bitmap image)

 Programmers Guide Girgit

 180
 © Verifone Inc. All rights reserved.

Member Function Documentation:

getStatus()

This method is called to retrieve the current status of the printer.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IPrinter.getStatus()

Parameters

None.

Return Values

Returns the operational status of the printer.

 Error Type Error Code Description

ERROR_NONE (0x00) Normal operation.

ERROR_PAPERENDED (0xF0) Out of paper.

ERROR_NOCONTENT (0xF1) No content to print.

ERROR_HARDERR (0xF2) Printer hardware error.

ERROR_OVERHEAT (0xF3) Printer overheating.

ERROR_NOBM (0xF6) No black mark detected.

ERROR_BUSY (0xF7) Printer is busy.

ERROR_MOTORERR (0xFB) Motor malfunction.

ERROR_LOWVOL (0xE1) Low battery voltage.

ERROR_NOTTF (0xE2) No TTF available.

ERROR_BITMAP_TOOWIDE (0xE3) Bitmap width exceeds limit.

 Programmers Guide Girgit

 181
 © Verifone Inc. All rights reserved.

setGray()

This method is called to set the gray level for printing.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPrinter.setGray(int gray)

Parameters

gray An integer indicating the desired level of gray, from 0 to 7.

Return Values

void

addText()

This method adds a specified text string to the print queue for printing. It allows for flexible
formatting options through a Bundle that defines the text's appearance (such as font size,
style, alignment, etc.).

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPrinter.addText (in Bundle format,

String text)

Parameters

format A Bundle containing various settings for customizing the text:

 font(int) Specifies the font size:

0: Small (size 16).

1: Normal (size 24).

 Programmers Guide Girgit

 182
 © Verifone Inc. All rights reserved.

2: Normal_bigger (size 24, double height and bold).

3: Large (size 32).

4: Large_bigger (size 32, double height and bold).

5: Huge (size 48).

6: Normal_wide (size 24, double width and bold).

7: Large_wide (size 32, double width and bold).

fontStyle(String) Specifies the font style:

Custom font Specify an absolute path to a custom font by user
(e.g., /xxxx/xx.ttf).

align(int) Text alignment:

0: Left.

1: Center.

2: Right.

bold(boolean) Text to print:

true: Bold.

false: Normal.

newline(boolean) A new line is added after printing the text:

true: New line after print.

false: Normal.

scale_w(float) Multiple Width scaling.

scale_h(float) Multiple Height scaling.

text Indicates the content is going to be printed on the receipt.

 Programmers Guide Girgit

 183
 © Verifone Inc. All rights reserved.

Return Values

void

See Also

addTextInLine()

addTextInLine()

This method enables the user to print three separate text strings in a single line, allowing
for better layout control in receipts.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPrinter.addTextInLine (in Bundle

format, String lString, String mString, String rString, int mode)

Parameters

format A Bundle that contains key-value pairs for text formatting settings:

 fontSize(int) Specifies the size of the font:

0: Small (size 16).

1: Normal (size 24).

2: Normal_bigger (size 24, double height and
bold).

3: Large (size 32).

bold(boolean) Text to print:

true: Bold.

false: Normal.

 Programmers Guide Girgit

 184
 © Verifone Inc. All rights reserved.

fontStyle(String) Specifies the font style:

Chinese
(Android font)

Use the default system font for Chinese
characters.

English
(Android font)

Use the default system font for English text.

Arabic
(Android font)

Use the default system font for Arabic text.

Custom font Specify an absolute path to a custom font by
user (e.g., /xxxx/xx.ttf).

lString The string to be printed on the left side, justified to the left.

mString The string to be printed in the middle or center.

rString The string to be printed on the right side, justified to the right.

mode An integer specifies the formatting behaviour for the text:

 0: The left and right justified text divide the width
equally.

1: The left and right justified text divide the width
flexible.

Return Values

void

See Also

addText()

 Programmers Guide Girgit

 185
 © Verifone Inc. All rights reserved.

addBarCode()

This method is called to generate and print a barcode (CodeType Code128) based on a
given string.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPrinter.addBarCode (in Bundle format,

in String barcode)

Code Snippet

public enum BarcodeFormat {

 AZTEC,

 CODABAR,

 CODE_39,

 CODE_93,

 CODE_128,

 DATA_MATRIX,

 EAN_8,

 EAN_13,

 ITF,

 MAXICODE,

 PDF_417,

 QR_CODE,

 RSS_14,

 RSS_EXPANDED,

 UPC_A,

 UPC_E,

 UPC_EAN_EXTENSION;

 private BarcodeFormat() {

 }

}

Parameters

format A Bundle object that contains key-value pairs specifying the settings for
generating the barcode:

 align(int) Specifies the alignment of the barcode:

0: Left.

 Programmers Guide Girgit

 186
 © Verifone Inc. All rights reserved.

1: Center.

2: Right.

height(int) The height of the barcode in units.

barCodeType(int) Specifies the type of barcode to be printed:

The default barcode type is
"BarcodeFormat.CODE_128.ordinal()”, which
corresponds to the Code 128 barcode format.

barcode A string that represents the data encoded in the barcode.

Return Values

void

addQrCode()

This method is called to enable printing of QR codes with customizable options.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPrinter.addQrCode (in Bundle format,

String qrCode)

Parameters

format A Bundle object that specifies the print format, which includes settings for
the positioning and appearance of the QR code:

 offset(int) Specifies the horizontal offset from the left
edge of the print area. This allows for
positioning the QR code at a specific
location.

expectedHeight(int) The expected height and width of the QR
code. It should be a multiple of the minimum

 Programmers Guide Girgit

 187
 © Verifone Inc. All rights reserved.

pixel size required for QR codes to ensure
proper readability.

qrCode The specific data to be encoded in the QR code.

Return Values

void

addQrCodesInLine()

This method is used to print multiple QR codes in a single line, allowing for efficient layout
and space management.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPrinter.addQrCodesInLine (in List<

QrCodeContent > qrCodes)

Parameters

qrCodes A list of QrCodeContent objects, where each object represents the data
to be encoded in an individual QR code.

Return Values

void

addImage()

This method is called to add an image to the print queue, allowing for customization of the
image's printing parameters.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPrinter.addImage (in Bundle format,

in byte[] imageData)

 Programmers Guide Girgit

 188
 © Verifone Inc. All rights reserved.

Code Snippet

@brief Add an image to print

 @param format - the format setting

 offset(int) - the offset from left

 width(int) - the width of the image want to print.(MAX = 384)

 height(int) - the height want to print

 gray(int) - set pixcel gray to pint（0~255 default = 128）

 @param imageData - the image buffer

 \en_e

 <p>

 \code{.java}

 // get image buffer from id

 private byte[] getBitmapByte(int id) {

 BitmapFactory.Options bfoOptions = new BitmapFactory.Options();

 bfoOptions.inScaled = false;

 ByteArrayOutputStream out = new ByteArrayOutputStream();

 BitmapFactory.decodeResource(context.getResources(), id,

bfoOptions).compress(Bitmap.CompressFormat.JPEG, 100, out);

 try {

 out.flush();

 out.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 return out.toByteArray();

 }

 \endcode

 \code{.java}

// get image buffer from file public byte[] image2byte(String path) { byte[]

data = null; FileInputStream input = null; try { input = new FileInputStream(new

File(path)); ByteArrayOutputStream output = new ByteArrayOutputStream(); byte[]

buf = new byte[1024]; int numBytesRead = 0; while ((numBytesRead =

input.read(buf)) != -1) { output.write(buf, 0, numBytesRead); } data =

output.toByteArray(); output.close(); input.close(); } catch

(FileNotFoundException ex1) { ex1.printStackTrace(); } catch (IOException ex1) {

ex1.printStackTrace(); } return data; }

Parameters

format A Bundle object that contains formatting options for the image
(Bitmap.CompressFormat.JPEG).

 Programmers Guide Girgit

 189
 © Verifone Inc. All rights reserved.

imageData A byte array containing the actual image data to be printed.

Return Values

void

feedLine()

This method is used to command a printer to advance the paper by a specified number of
lines, allowing for appropriate spacing during printing.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPrinter.feedLine (int lines)

Parameters

lines The number of lines to feed the paper. The input value must satisfy the
following outcomes:

Must be greater than 1 (lines > 1).

Must be less than or equal to 50 (lines <= 50).

The actual number of lines advanced will be lines + 1, as the
current line being printed is also counted.

Return Values

void

 Programmers Guide Girgit

 190
 © Verifone Inc. All rights reserved.

startPrint()

This method is called to initiate the printing operation. It allows for monitoring the printing
status through a listener.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPrinter.startPrint (PrinterListener

listener)

Parameters

listener A callback interface to notify the result of the print operation. Refer to
PrinterListener.

Return Values

void

startSaveCachePrint()

This method is called to start the print process while retaining the cached data for future
use.

NOTE
This method has been deprecated. Refer to
IPrinter.startPrint()instead.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPrinter.startSaveCachePrint

(PrinterListener listener)

Parameters

 Programmers Guide Girgit

 191
 © Verifone Inc. All rights reserved.

listener A callback interface to notify the result of the print operation. Refer to
PrinterListener.

Return Values

void

See Also

IPrinter.startPrint()

setLineSpace()

This method is called to set the line spacing for printed text.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPrinter.setLineSpace (int space)

Parameters

space An integer that specifies the line spacing value, which must be within
the range of 0 to 50.

Return Values

void

 Programmers Guide Girgit

 192
 © Verifone Inc. All rights reserved.

cleanCache()

This method is called to clear the printer’s cache.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IPrinter.cleanCache ()

Parameters

None.

Return Values

startPrintInEmv()

This method is called to start the printing operations during an EMV transaction process. It
facilitates printing tasks that are part of the EMV flow without terminating the ongoing
transaction.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPrinter.startPrintInEmv

(PrinterListener listener)

Parameters

listener A callback interface to notify the outcome of the EMV print operation.
The listener will provide feedback on whether the printing was
successful or if an error occurred during the process. Refer to
PrinterListener.

Return Values

void

 Programmers Guide Girgit

 193
 © Verifone Inc. All rights reserved.

The status of clearing the printer’s cached data:

1: Succeeded - Indicates that the cache was successfully cleared.

0: Failed - Indicates that the operation to clear the cache was unsuccessful.

addBmpImage()

This method is called to add a bitmap image in BMP format to the printer's cache for
subsequent printing.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPrinter.addBmpImage (in Bundle format,

in Bitmap image)

Parameters

format A Bundle object that contains key-value pairs indicating the format and
settings of the image.

 offset(int) The horizontal offset from the left edge where the
image will be printed.

width(int) The width of the image to be printed, with a
maximum value of 384 pixels.

height(int) The height of the image to be printed.

gray(int) Sets the pixel gray level for the image, ranging from 0
to 255 with a default value of 128.

imageData The BMP image data that will be added to the printer's cache for
printing.

Return Values

void

 Programmers Guide Girgit

 194
 © Verifone Inc. All rights reserved.

2.2.14 IPinpad

Package: com.vfi.smartpos.deviceservice.aidl.IPinpad

Overview:

This interface is used for communicating with Pinpad devices in payment processing applications. It
provides essential methods for key management, PIN input processing, and data encryption/decryption
for Pinpad.

Public Member Functions:

Modifier and Type Method

boolean isKeyExist (int keyType, int keyId)

boolean loadTEK (int keyId, in byte[] key, in byte[] checkValue)

boolean loadTEKWithAlgorithmType (int keyId, in byte[] key, in byte algorithmType, in byte[] checkValue)

boolean loadEncryptMainKey (int keyId, in byte[] key, in byte[] checkValue)

boolean loadEncryptMainKeyWithAlgorithmType (int keyId, in byte[] key, int algorithmType, in byte[]
checkValue)

boolean loadMainKey (int keyId, in byte[] key, in byte[] checkValue)

boolean loadMainKeyWithAlgorithmType (int keyId, in byte[] key, int algorithmType, in byte[] checkValue)

boolean loadDukptKey (int keyId, in byte[] ksn, in byte[] key, in byte[] checkValue)

boolean loadWorkKey (int keyType, int mkId, int wkId, in byte[] key, in byte[] checkValue)

boolean loadWorkKeyWithDecryptType (int keyType, int mkId, int wkId, int decKeyType, in byte[] key, in
byte[] checkValue)

byte[] calcMAC (int keyId, in byte[] data)

byte[] calcMACWithCalType (int keyId, int type, in byte[] CBCInitVec, in byte[] data, int desType,
boolean dukptRequest)

byte[] encryptTrackData (int mode, int keyId, in byte[] trkData)

 Programmers Guide Girgit

 195
 © Verifone Inc. All rights reserved.

byte[] encryptTrackDataWithAlgorithmType (int mode, int keyId, int algorithmType, in byte[] trkData,
boolean dukptRequest)

void startPinInput (int keyId, in Bundle param, in Bundle globleParam, PinInputListener listener)

void submitPinInput ()

void stopPinInput ()

String getLastError ()

byte[] colculateData (int mode, int desType, in byte[] key, in byte[] data)

byte[] dukptEncryptData (int destype, int algorithm, int keyid, in byte[] data, in byte[] CBCInitVec)

boolean savePlainKey (int keyType, int keyId, in byte[] key)

byte[] getDukptKsn ()

Bundle generateSM2KeyPair ()

byte[] getSM3Summary (in byte[] data)

byte[] getSM2Sign (in Bundle bundle)

byte[] getKeyKCV (int keyIndex, int keyType)

Map initPinInputCustomView (int keyId, in Bundle param, in List< PinKeyCoorInfo > pinKeyInfos,
PinInputListener listener)

void startPinInputCustomView ()

void endPinInputCustomView ()

byte[] calculateData (int mode, int desType, in byte[] key, in byte[] data)

byte[] calculateDataEx (int mode, int desType, in byte[] key, in byte[] data, in byte[] initVec)

byte[] encryptPinFormat0 (int pinKeyId, int desType, in byte[] cardNumber, String passwd)

byte[] calculateByDataKey (int keyId, int encAlg, int encMode, int encFlag, in byte[] data, in byte[]
initVec)

 Programmers Guide Girgit

 196
 © Verifone Inc. All rights reserved.

boolean loadEncryptMainKeyEX (int keyId, in byte[] key, int algorithmType, in byte[] checkValue, in Bundle
extend)

boolean loadWorkKeyEX (int keyType, int mkId, int wkId, int decKeyType, in byte[] key, in byte[]
checkValue, in Bundle extend)

boolean clearKey (int keyId, int keyType)

boolean loadDukptKeyEX (int keyId, in byte[] ksn, in byte[] key, in byte[] checkValue, in Bundle extend)

boolean loadTEKEX (int keyId, in byte[] key, in byte algorithmType, in byte[] checkValue, in Bundle extend)

byte[] calculateByWorkKey (int keyId, int keyType, int encAlg, int encMode, int encFlag, in byte[] data, in
Bundle extend)

byte[] calculateByMSKey (int keyId, int keyType, int algorithmMode, in byte[] data, in Bundle extend)

Member Function Documentation:

isKeyExist()

This method is used to check if a specific key exists in the Pinpad's key storage. It currently
supports only the ECB (Electronic Codebook) key type.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IPinpad.isKeyExist (int keyType,

int keyId)

Parameters

keyType Indicates the type of cryptographic key.

 0: MASTER (main) key.

1: MAC key.

2: PIN (work) key.

3: TD key.

 Programmers Guide Girgit

 197
 © Verifone Inc. All rights reserved.

4: (SM) MASTER key.

5: (SM) MAC key.

6: (SM) PIN key.

7: (SM) TD key.

8: (AES) MASTER key.

9: (AES) MAC key.

10: (AES) PIN key.

11: (AES) TD key.

12: DUKPT key.

13: TEK.

14: (SM)TEK.

15: (AES)TEK.

keyId The index of the key has a range of 0 to 4 for DUKPT (Derived Unique Key
Per Transaction) keys and 0 to 99 for other key types.

Return Values

A Boolean value:

true: Indicates that the specified cryptographic key exists on the device.

false: Indicates that the specified key does not exist.

 Programmers Guide Girgit

 198
 © Verifone Inc. All rights reserved.

loadTEK()

This method is called to load a plain Transaction Encryption Key (TEK) onto the Pinpad
device. The default algorithm is set to 2, which corresponds to a 3DES plain key. The TEK is
essential for encrypting the master key during transaction processing.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IPinpad.loadTEK (int keyId,

in byte[] key, in byte[] checkValue)

Parameters

keyId An index ranging from 0 to 99.

key The cryptographic key that is encrypted using TEK.

checkValue To validate the integrity and suitability of the cryptographic key.

Return Values

A Boolean value:

true: Indicates that the TEK was successfully loaded onto the Pinpad.

false: Indicates that the operation failed.

See Also

• loadTEKWithAlgorithmType()

• loadEncryptMainKey()

• loadEncryptMainKeyWithAlgorithmType()

 Programmers Guide Girgit

 199
 © Verifone Inc. All rights reserved.

loadTEKWithAlgorithmType()

This method is called to load a TEK key, which is used as the transfer key to encrypt the
master key. The default algorithm type for this method is ECB mode.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IPinpad.loadTEKWithAlgorithmType

(int keyId, in byte[] key, in byte algorithmType, in byte[] checkValue)

Parameters

keyId An index ranging from 0 to 99.

key The cryptographic key that is encrypted using the TEK.

algorithmType A byte that specifies the encryption algorithm used for the TEK.

 1: 3DES encrypted key.

2: 3DES plain key.

3: SM4 encrypted key.

4: SM4 plain key.

5: AES encrypted key.

6: AES plain key.

checkValue To validate the integrity and suitability of the cryptographic key.

Return Values

A Boolean value:

true: Indicates that the TEK was successfully loaded onto the Pinpad.

false: Indicates that the operation failed.

 Programmers Guide Girgit

 200
 © Verifone Inc. All rights reserved.

See Also

• loadTEK()

• loadEncryptMainKey()

• loadEncryptMainKeyWithAlgorithmType()

loadEncryptMainKey()

This method is called to load an encrypted master key onto the Pinpad device. The master
key is encrypted using the 3DES ECB algorithm, and the decryption uses the TEK with an
index of 0.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IPinpad.loadEncryptMainKey (int

keyId, in byte[] key, in byte[] checkValue)

Parameters

keyId An index ranging from 0 to 99.

key The cryptographic key that is encrypted using TEK.

checkValue To validate the integrity and suitability of the cryptographic key. The
default is set to null.

Return Values

A Boolean value:

true: Indicates that the master key was successfully loaded onto the Pinpad.

false: Indicates that the operation failed.

See Also

• loadTEK()

• loadTEKWithAlgorithmType()

• loadEncryptMainKeyWithAlgorithmType()

 Programmers Guide Girgit

 201
 © Verifone Inc. All rights reserved.

• loadMainKey loadWorkKey loadWorkKeyWithDecryptType

loadEncryptMainKeyWithAlgorithmType()

This method is called to load a master encryption key onto the Pinpad device, specifying
the encryption algorithm type to be used. The default is ECB mode, and it decrypts using
the TEK with an index of 0.

Prototype

boolean

com.vfi.smartpos.deviceservice.aidl.IPinpad.loadEncryptMainKeyWithAlgorithmType

(int keyId, in byte[] key, int algorithmType, in byte[] checkValue)

Parameters

keyId An index ranging from 0 to 99.

key The cryptographic key that is encrypted using the TEK.

algorithmType An integer that specifies the encryption algorithm used for the master
key.

 1: 3DES algorithm.

3: SM4 algorithm.

5: AES algorithm.

checkValue To validate the integrity and suitability of the cryptographic key. The
default is set to null.

Return Values

A Boolean value:

true: Indicates that the master key was successfully loaded onto the Pinpad.

false: Indicates that the operation failed.

 Programmers Guide Girgit

 202
 © Verifone Inc. All rights reserved.

See Also

• loadTEK()

• loadTEKWithAlgorithmType()

• loadEncryptMainKey()

• loadMainKey()

• loadWorkKey()

• loadWorkKeyWithDecryptType()

loadMainKey()

This method is called to load a plain master key onto the Pinpad device. The default
encryption algorithm used for this key is 3DES ECB.

NOTE
As per PCI Compliance, direct plain key injection is not
allowed. Hence to use this API, requires few dependency
files which loads the plain master key (3DES ECB algorithm
default) as per Girgit Service. For further assistance, please
contact Verifone Support Team.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IPinpad.loadMainKey (int keyId,

in byte[] key, in byte[] checkValue)

Parameters

keyId An index ranging from 0 to 99.

key The cryptographic key that is encrypted using the TEK.

checkValue To validate the integrity and suitability of the cryptographic key. The
default is set to null.

Return Values

 Programmers Guide Girgit

 203
 © Verifone Inc. All rights reserved.

A Boolean value:

true: Indicates that the master key was successfully loaded onto the Pinpad.

false: Indicates that the operation failed.

See Also

• loadEncryptMainKey()

• loadEncryptMainKeyWithAlgorithmType()

• loadMainKeyWithAlgorithmType()

• loadWorkKey()

• loadWorkKeyWithDecryptType()

loadMainKeyWithAlgorithmType()

This method is called to load a plain master key onto the Pinpad device using a specified
encryption algorithm type. This method supports both ECB and CBC modes of operation.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IPinpad.loadMainKeyWithAlgorithmType

(int keyId, in byte[] key, int algorithmType, in byte[] checkValue)

Parameters

keyId An index ranging from 0 to 99.

key The cryptographic key that is encrypted using the TEK.

algorithmType An integer values to indicate specific cryptographic algorithms used for
the plain master key.

 0x02: 3DES algorithm.

0x04: SM4 algorithm.

0x06: AES algorithm.

 Programmers Guide Girgit

 204
 © Verifone Inc. All rights reserved.

checkValue To validate the integrity and suitability of a cryptographic key. The
default is set to null.

Return Values

A Boolean value:

true: Indicates that the master key was successfully loaded onto the Pinpad.

false: Indicates that the operation failed.

See Also

• loadEncryptMainKey()

• loadEncryptMainKeyWithAlgorithmType()

• loadMainKey()

• loadWorkKey()

• loadWorkKeyWithDecryptType()

loadDukptKey()

This method is called to load an encrypted DUKPT key onto the Pinpad device. It decrypts
the DUKPT key using TEK with an index of 0.

NOTE
• This interface method has been deprecated. Refer to

IDUKPT.aidl.

• As per PCI Compliance, direct plain key injection is
not allowed. Hence to use this API, requires few
dependency files which loads the plain DUKPT key
(3DES ECB algorithm default) as per Girgit Service.
For further assistance, please contact Verifone
Support Team.

Prototype

 Programmers Guide Girgit

 205
 © Verifone Inc. All rights reserved.

boolean com.vfi.smartpos.deviceservice.aidl.IPinpad.loadDukptKey (int keyId,

in byte[] ksn, in byte[] key, in byte[] checkValue)

Parameters

keyId An index ranging from 0 to 4.

ksn The Key Serial Number (KSN) associated with the DUKPT key.

key The cryptographic key that is encrypted using the TEK.

checkValue To validate the integrity and suitability of the cryptographic key. The
default is set to null.

Return Values

A Boolean value:

true: Indicates that the DUKPT key was successfully loaded onto the Pinpad.

false: Indicates that the operation failed.

loadWorkKey()

This method is called to load a work key onto the Pinpad device. The work key is encrypted
using the 3DES ECB algorithm and is decrypted by the corresponding master key during
the loading process.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IPinpad.loadWorkKey (int keyType,

int mkId, int wkId, in byte[] key, in byte[] checkValue)

Parameters

keyType Select the type of work key:

 1: MAC key.

 Programmers Guide Girgit

 206
 © Verifone Inc. All rights reserved.

2: PIN key.

3: TD key.

mkId The ID of the master key used for decrypting the work key.

wkId Set the index for the work key ID ranging from 0 to 99.

key The cryptographic key that will be loaded onto the Pinpad.

checkValue To validate the integrity and suitability of the cryptographic key. The
default is set to null for none.

Return Values

A Boolean value:

true: Indicates that the work key was successfully loaded onto the Pinpad.

false: Indicates that the operation failed.

See Also

• loadWorkKeyWithDecryptType()

• loadEncryptMainKey()

• loadEncryptMainKeyWithAlgorithmType()

• loadMainKey()

• loadMainKeyWithAlgorithmType()

loadWorkKeyWithDecryptType()

This method is called to load the work key onto the Pinpad device with the specified
decryption key type.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IPinpad.loadWorkKeyWithDecryptType

(int keyType, int mkId, int wkId, int decKeyType, in byte[] key, in byte[]

checkValue)

 Programmers Guide Girgit

 207
 © Verifone Inc. All rights reserved.

Parameters

keyType Select the type of work key:

 1: MAC key.

2: PIN key.

3: TD key.

5: (SM4) MAC key.

6: (SM4) PIN key.

7: (SM4) TD key.

9: (AES) MAC key.

10: (AES) PIN key.

11: (AES) TD key.

mkId The ID of the master key used for decrypting the work key.

wkId Set the index for the work key ID ranging from 0 to 99.

decKeyType Specifies the type of decryption key used:

 0: 3DES master key.

1: Transport key.

2: SM4 master key.

3: AES master key.

key The cryptographic key that will be loaded onto the Pinpad.

checkValue To validate the integrity and suitability of the cryptographic key. The
default is set to null for none.

Return Values

 Programmers Guide Girgit

 208
 © Verifone Inc. All rights reserved.

A Boolean value:

true: Indicates that the work key was successfully loaded onto the Pinpad.

false: Indicates that the operation failed.

See Also

• loadWorkKey()

• loadEncryptMainKey()

• loadEncryptMainKeyWithAlgorithmType()

• loadMainKey loadMainKeyWithAlgorithmType()

calcMAC()

This method is called to calculate the Message Authentication Code (MAC) for a given data
input using the default 3DES encryption algorithm with X919 format.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPinpad.calcMAC (int keyId, in byte[]

data)

Parameters

keyId The index of the MAC key used for the calculation.

data The source data input for which the MAC is to be calculated.

Return Values

Returns the calculated MAC value as a byte. It returns Null if there is failure in the MAC
calculation.

See Also

• loadWorkKey()

• loadWorkKeyWithDecryptType()

 Programmers Guide Girgit

 209
 © Verifone Inc. All rights reserved.

calcMACWithCalType()

This method calculates the MAC using a specified calculation type. It supports additional
options like CBC initialization vector (initVec) and DUKPT requests.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPinpad.calcMACWithCalType (int

keyId, int type, in byte[] CBCInitVec, in byte[] data, int desType, boolean

dukptRequest)

Parameters

keyId The index of the key has a range of 0 to 99 for MAC Keys, and 0 to 4 for
DUKPT keys.

type The MAC’s calculation mode.

 0x00: MAC X99.

0x01: MAC X919.

0x02: ECB (CUP standard ECB algorithm).

0x03: MAC 9606.

0x04: CBC MAC calculation.

CBCInitVec The CBC initialization vector used for encryption. This should have a
fixed length of 8 bytes. It can be set to null, in which case it defaults to an
8-byte array of 0x00.

data The source data for which the MAC is to be calculated.

desType Type of encryption algorithm for MAC calculation process.

 0x00: DES.

0x01: 3DES.

 Programmers Guide Girgit

 210
 © Verifone Inc. All rights reserved.

0x02: SM4.

0x03: AES.

dukptRequest A Boolean value indicating if the operation uses the DUKPT key.

 true: Indicates that the keyId refers to the DUKPT key ID.

Return Values

Returns the calculated MAC value as a byte. It returns Null if there is failure in the MAC
calculation.

See Also

• loadWorkKey()

• loadWorkKeyWithDecryptType()

• calcMAC()

encryptTrackData()

This method encrypts the track data using the default 3DES algorithm.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPinpad.encryptTrackData (int mode,

int keyId, in byte[] trkData)

Parameters

mode An integer specifying the encryption mode to be used:

 0: ECB.

1: CBC.

keyId The ID of the Track Data Key (TDK) that will be used in the encryption
process.

 Programmers Guide Girgit

 211
 © Verifone Inc. All rights reserved.

trkData A byte array that represents the track data to be encrypted.

Return Values

Returns the encrypted track data. If the encryption fails, the method will return Null.

encryptTrackDataWithAlgorithmType()

This method encrypts track data using a specified encryption algorithm and mode,
allowing for more flexibility in the encryption process.

Prototype

byte[]

com.vfi.smartpos.deviceservice.aidl.IPinpad.encryptTrackDataWithAlgorithmType

(int mode, int keyId, int algorithmType, in byte[] trkData, boolean

dukptRequest)

Parameters

mode An integer specifying the encryption mode to be used:

 0: ECB.

1: CBC.

keyId The ID of the Track Data Key (TDK) that will be used in the encryption
process. It ranges from 0 to 4 for DUKPT keys and 0 to 99 for other key
types.

AlgorithmType An integer that indicates which cryptographic algorithm should be used
for encrypting the track data.

 0x01: 3DES.

0x02: SM4.

0x03: AES.

trkData A byte array that represents the track data to be encrypted.

 Programmers Guide Girgit

 212
 © Verifone Inc. All rights reserved.

dukptRequest A Boolean value indicating if the operation uses the DUKPT key.

 true: Indicates that the keyId refers to the DUKPT key ID.

Return Values

Returns the encrypted track data. If the encryption fails, the method will return Null.

startPinInput()

This method is called to start the process of collecting user’s Personal Identification
Number (PIN).

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPinpad.startPinInput (int keyId,

in Bundle param, in Bundle globleParam, PinInputListener listener)

Parameters

keyId The index of the key has a range of 0 to 99 for PIN Keys, and 0 to 4 for
DUKPT keys.

param A Bundle object containing specific parameters for the PIN input operation.

 pinLimit(byte[]) An array defining valid lengths for
the PIN. For example, {0, 4, 5, 6}
indicates valid lengths of 0, 4, 5, or 6
digits.

timeout(int) The timeout duration in seconds.

isOnline(boolean) Indicates if the PIN is processed
online.

promptString(String) A string to display as a prompt for
the user.

 Programmers Guide Girgit

 213
 © Verifone Inc. All rights reserved.

pan(String) The Primary Account Number (PAN)
for encrypting an online PIN.

desType(int) Specifies the calculation type for
encryption:

0x01 MK/SK(master
key/session key) + 3DES
(default).

0x02 MK/SK + AES.

0x03 MK/SK + SM4.

0x04 DUKPT + 3DES.

numbersFont(String) URL of numbers TTF font (value ""
is android system fonts).

promptsFont(String) URL of prompt TTF font (value "" is
android system fonts).

otherFont(String) URL of other TTF font (confirm
button and backspace button)
(value "" is android system fonts).

displayKeyValue(byte[]) Custom the sequence key number
of Pinpad.

random(byte[]) Random number participation in
pinblock calculation. The default is
not set.

notificatePinLenError(boolean) Notification password is not long
enough. The default is set to false.

randomize_PED(boolean) Whether or not the pin input digits
shall be randomized. The default is
set to true.

 Programmers Guide Girgit

 214
 © Verifone Inc. All rights reserved.

globalParam Set global display options. If null, the service defaults to Arabic numerals
(0 to 9) and English labels (confirm/backspace buttons).

 Display_One(String) Text for the first display item.

Display_Two(String) Text for the second display item.

Display_Three(String) Text for the third display item.

Display_Four(String) Text for the fourth display item.

Display_Five(String) Text for the fifth display item.

Display_Six(String) Text for the sixth display item.

Display_Seven(String) Text for the seventh display item.

Display_Eight(String) Text for the eighth display item.

Display_Nine(String) Text for the ninth display item.

Display_Zero(String) Text for the zero display item.

Display_Confirm(String) Text for the confirm button.

Display_BackSpace(String) Text for the backspace button.

listener A callback interface that receives notifications regarding the PIN input
process. Refer to PinInputListener.

Return Values

void

 Programmers Guide Girgit

 215
 © Verifone Inc. All rights reserved.

submitPinInput()

This method is used to submit PIN for processing.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPinpad.submitPinInput ()

Parameters

None.

Return Values

void

stopPinInput()

This method is used to stop the PIN input process on the Pinpad device.

NOTE
This method has been deprecated.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPinpad.stopPinInput ()

Parameters

None.

Return Values

 Programmers Guide Girgit

 216
 © Verifone Inc. All rights reserved.

void

getLastError()

This method is called to retrieve the last error that occurred during the operation of the
Pinpad device.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IPinpad.getLastError ()

Parameters

None.

Return Values

A string representing the description of the last error that occurred.

colculateData()

This method is used for performing cryptographic operations, including encryption or
decryption of data on the Pinpad device.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPinpad.colculateData (int mode, int

desType, in byte[] key, in byte[] data)

Parameters

mode Specifies the mode of operation for the encryption or decryption operation.

 0x00 MK/SK Encrypt.

0x01 MK/SK Decrypt.

 Programmers Guide Girgit

 217
 © Verifone Inc. All rights reserved.

desType Indicates the type of encryption or decryption standard.

 TYPE_DES 0x00 DES Type.

TYPE_3DES 0x01 3DES Type (EBC).

TYPE_SM4 0x02 SM4 Type.

TYPE_AES 0x03 AES Type.

TYPE_SM2_PUBKEY 0x04 SM2 Type (use public key).

TYPE_SM2_PRIVKEY 0x05 SM2 Type (use private key).

TYPE_3DES 0x06 3DES Type (CBC, with an initVec of
00000000).

key A byte array that represents the cryptographic key used for the operation.

data The source data to be encrypted or decrypted.

Return Values

The encrypted or decrypted data as a byte array. Returns Null if the operation fails.

See Also

calculateData()

dukptEncryptData()

This method is used for encrypting data using the DUKPT key management scheme.

NOTE
This method has been deprecated. Refer to
IDUKPT.aidl.

 Programmers Guide Girgit

 218
 © Verifone Inc. All rights reserved.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPinpad.dukptEncryptData (int

destype, int algorithm, int keyid, in byte[] data, in byte[] CBCInitVec)

Parameters

desType The type of encryption standard to be used:

 TYPE_DES 0x00 DES Type.

TYPE_3DES 0x01 3DES Type.

TYPE_SM4 0x02 SM4 Type.

TYPE_AES 0x03 AES Type.

algorithm The type of algorithm used for encryption:

 0x01: CBC.

0x02: ECB.

keyId The index of the key used for encryption. The value can range from 0 to 4
for DUKPT keys.

data The source data to be encrypted.

CBCInitVec The CBC initialization vector used for encryption. This should have a fixed
length of 8 bytes. It can be set to null, in which case it defaults to an 8-
byte array of 0x00.

Return Values

Returns a byte array containing the encrypted data using the specified parameters.

 Programmers Guide Girgit

 219
 © Verifone Inc. All rights reserved.

savePlainKey()

This method is used to save the plain key (unencrypted key) into the Pinpad device,
particularly supporting the 3DES encryption standard.

NOTE
This method has been deprecated.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IPinpad.savePlainKey (int keyType,

int keyId, in byte[] key)

Parameters

keyType Indicates the type of key being saved.

 1: MAC.

2: PIN.

3: TD.

keyId The index of the key being saved.

key The source data key to be saved.

Return Values

A Boolean value:

true: The plain key was successfully saved into the Pinpad device.

false: There was a failure in saving the plain key.

 Programmers Guide Girgit

 220
 © Verifone Inc. All rights reserved.

getDukptKsn()

This method is used to retrieve the current DUKPT KSN from the Pinpad device.

NOTE
This method has been deprecated. Refer to
IDUKPT.aidl.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPinpad.getDukptKsn ()

Parameters

None.

Return Values

The current DUKPT KSN.

generateSM2KeyPair()

This method is called to generate a key pair (public key and private key) for the SM2
encryption algorithm.

Prototype

Bundle com.vfi.smartpos.deviceservice.aidl.IPinpad.generateSM2KeyPair ()

Parameters

None.

Return Values

 Programmers Guide Girgit

 221
 © Verifone Inc. All rights reserved.

A Bundle containing the following:

publicKey(string): A string representing the generated public key.

privateKey(string): A string representing the generated private key.

getSM3Summary()

This method is called to retrieve the SM3 data summary by computing the SM3 hash (a
cryptographic hash function) of the provided input data.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPinpad.getSM3Summary (in byte[]

data)

Parameters

data A byte array indicating the input data that the user wants to hash using
the SM3 algorithm.

Return Values

The computed SM3 data summary as a byte array.

getSM2Sign()

This method is called to retrieve the SM2 digital signature for the provided data. It uses the
SM2 algorithm to sign the data, ensuring its authenticity and integrity.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPinpad.getSM2Sign (in Bundle bundle)

Parameters

 Programmers Guide Girgit

 222
 © Verifone Inc. All rights reserved.

bundle A Bundle object that contains the necessary data required for signing
including:

 prikey(byte[]) The private key used for signing; passed as a byte
array.

data(byte[]) The byte array of the data that the user wants to
sign.

Return Values

Returns the SM2 digital signature as a byte array.

getKeyKCV()

This method retrieves the Key Check Value (KCV) for a specified key. The KCV is a value
used to verify the integrity of cryptographic keys, ensuring they have not been altered or
corrupted.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPinpad.getKeyKCV (int keyIndex,

int keyType)

Parameters

keyIndex The index of the key for which the KCV is requested.

keyType Indicates the type of the key for which the KCV is being retrieved.

 0x01: Data encryption key.

0x02: PIN working key.

0x03: MAC key.

0x04: Transfer key

0x05: Main key.

 Programmers Guide Girgit

 223
 © Verifone Inc. All rights reserved.

0x11: Data encryption key (SM4).

0x12: PIN working key (SM4).

0x13: MAC key (SM4).

0x14: Transport key (SM4).

0x15: Master key (SM4).

0x21: DATA key (AES).

0x22: PIN key (AES).

0x23: MAC key (AES).

0x24: AES transmission key.

0x25: AES master key.

Return Values

The check value (KCV) of the specified key as a byte array.

initPinInputCustomView()

This method is used to initialize a custom user interface for PIN input process on the Pinpad
device.

Prototype

Map com.vfi.smartpos.deviceservice.aidl.IPinpad.initPinInputCustomView (int

keyId, in Bundle param, in List< PinKeyCoorInfo > pinKeyInfos, PinInputListener

listener)

Parameters

keyId The pinKey ID is the ID of the loadWorkKey (PIN) ID.

 Programmers Guide Girgit

 224
 © Verifone Inc. All rights reserved.

param A Bundle that holds additional parameters for the PIN input setup.

 pinLimit(byte[]) An array defining valid lengths for the
PIN. For example, {0, 4, 5, 6} indicates
valid lengths of 0, 4, 5, or 6 digits).

timeout(int) The timeout duration in seconds.

isOnline(boolean) Indicates if the PIN is processed online.

pan(String) The Primary Account Number (PAN) for
encrypting an online PIN.

desType(int) Specifies the calculation type for
encryption.

displayKeyValue(byte[]) Customizes the sequence of key
numbers displayed on the Pinpad.

random(byte[]) A random number to participate in the
pinblock calculation. The default is not
set.

randomize_PED(boolean) Indicates whether the PIN input digits
should be randomized. The default is
set to true.

pinKeyInfos A list of PinKeyCoorInfo objects that define the coordinates and layout of
the PIN keys on the custom view.

listener A listener interface that receives callbacks related to the PIN input
process, such as success or error notifications. Refer to
PinInputListener.

Return Values

map<String String>: A map indicating the display values for the keys from 0 to 9.

 Programmers Guide Girgit

 225
 © Verifone Inc. All rights reserved.

startPinInputCustomView()

This method is used to start the custom user interface for PIN input process on the Pinpad
device.

NOTE
If you retrieve a Map<String, String> from a previous
initialization method, you should traverse the map to get the
values associated with the keys to display them on the PIN
input interface.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPinpad.startPinInputCustomView ()

Parameters

None.

Return Values

void

endPinInputCustomView()

This method is called to end the custom PIN input flow on the Pinpad device. It stops any
ongoing PIN input session that was initiated through the custom user interface.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPinpad.endPinInputCustomView ()

Parameters

None.

 Programmers Guide Girgit

 226
 © Verifone Inc. All rights reserved.

Return Values

void

calculateData()

This method is used for performing cryptographic operations, including encryption or
decryption of data.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPinpad.calculateData (int mode,

int desType, in byte[] key, in byte[] data)

Parameters

mode Specifies the mode of operation for the encryption or decryption operation.

 0x00 MK/SK Encrypt.

0x01 MK/SK Decrypt.

desType Indicates the type of encryption or decryption standard.

 TYPE_DES 0x00 DES Type.

TYPE_3DES 0x01 3DES Type (EBC).

TYPE_SM4 0x02 SM4 Type.

TYPE_AES 0x03 AES Type.

TYPE_SM2_PUBKEY 0x04 SM2 Type (use public key).

TYPE_SM2_PRIVKEY 0x05 SM2 Type (use private key).

TYPE_3DES 0x06 3DES Type (CBC, with an initVec of
00000000).

 Programmers Guide Girgit

 227
 © Verifone Inc. All rights reserved.

key A byte array that represents the cryptographic key used for the operation.

data The source data to be encrypted or decrypted.

Return Values

The encrypted or decrypted data as a byte array. Returns Null if the operation fails.

calculateDataEx()

This method is used for performing more advanced and complex cryptographic operations,
including encryption or decryption of sensitive data, with support for an initialization vector
for certain modes.

NOTE
This method has been deprecated.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPinpad.calculateDataEx (int mode,

int desType, in byte[] key, in byte[] data, in byte[] initVec)

Parameters

mode Specifies the mode of operation for the encryption or decryption.

 0x00 MK/SK Encrypt.

0x01 MK/SK Decrypt.

desType Indicates the type of encryption or decryption standard.

 TYPE_DES 0x00 DES Type.

TYPE_3DES 0x01 3DES Type (EBC).

 Programmers Guide Girgit

 228
 © Verifone Inc. All rights reserved.

TYPE_SM4 0x02 SM4 Type.

TYPE_AES 0x03 AES Type.

TYPE_SM2_PUBKEY 0x04 SM2 Type (use public key).

TYPE_SM2_PRIVKEY 0x05 SM2 Type (use private key).

TYPE_3DES 0x06 3DES Type (CBC).

NOTE
WorkKey (TD) ID = 60 indicates that this
specific identifier is reserved and should
not be used by user applications.

key A byte array that represents the cryptographic key used for the operation.

data The source data to be encrypted or decrypted.

initVec An initVec required for the 3DES CBC mode.

Return Values

The encrypted or decrypted data as a byte array. Returns Null if the operation fails.

encryptPinFormat0()

This method is called to securely encrypt the PIN using the provided card number and
password.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPinpad.encryptPinFormat0 (int

pinKeyId, int desType, in byte[] cardNumber, String passwd)

Parameters

 Programmers Guide Girgit

 229
 © Verifone Inc. All rights reserved.

pinKeyId Indicates the index of the pin key used for encryption. It ranges from 0 to
99.

desType Specifies the type of encryption standard to be used during the
encryption process.

 0x01 MK/SK + 3DES (default).

0x02 MK/SK + AES.

0x03 MK/SK + SM4.

`0x04 DUKPT + 3DES.

cardNumber Indicates the card number represented in ASCII. For example, the input
"1234", should be converted to a byte array as follows: byte[4] = {31, 32,
33, 34}.

passwd Indicates the plain password as a String, such as `"1234"`. This will be used
in conjunction with the card number for PIN block encryption.

Return Values

A byte array containing the encrypted PIN block.

calculateByDataKey()

This method is called to perform cryptographic operations such as encryption or
decryption using a specified data key.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPinpad.calculateByDataKey (int

keyId, int encAlg, int encMode, int encFlag, in byte[] data, in byte[] initVec)

Parameters

 Programmers Guide Girgit

 230
 © Verifone Inc. All rights reserved.

KeyId Indicates the index of the data key used for the cryptographic operation. It
ranges from 0 to 99.

encAlg Indicates the encryption algorithm to be used.

 0x01: 3DES.

0x02: SM4.

0x03: AES.

encMode Indicates the mode of operation for the encryption algorithm.

 0x01: ECB.

0x02: CBC.

encFlag Indicates an encryption flag that provides additional control over the
encryption or decryption process.

 0x00: Encrypt.

0x01: Decrypt.

data The source data to be encrypted or decrypted.

initVec An initialization vector is used in specific modes of encryption. The default
value is set to null.

Return Values

Returns the encrypted or decrypted data.

loadEncryptMainKeyEX()

This method is called to load an encrypted master key onto a secure Pinpad, based on the
specified encryption algorithm type.

Prototype

 Programmers Guide Girgit

 231
 © Verifone Inc. All rights reserved.

boolean com.vfi.smartpos.deviceservice.aidl.IPinpad.loadEncryptMainKeyEX (int

keyId, in byte[] key, int algorithmType, in byte[] checkValue, in Bundle extend)

Parameters

keyId Indicates the index of the key slot. It ranges from 0 to 99.

key Indicates the encrypted master key to be loaded.

algorithmType The type of algorithm used for encryption.

 0x01: 3DES algorithm.

0x03: SM4 algorithm.

0x05: AES algorithm.

0x81: 3DES (CBC).

0x83: SM4 (CBC).

0x85: AES (CBC).

checkValue A byte array used for integrity verification of the key being loaded. The
default value is set to null.

extend A Bundle object that allows you to pass additional optional parameters
related to the key loading process.

 isCBCType(boolean) Indicates whether the
master key encryption mode
is CBC mode. The default is
set to false.

initVec(byte[]) Initialization vector for CBC
mode. The default is set to
16 byte 0.

isMasterEncMasterMode(boolean) Indicates whether the MK
(master key) can encrypt
another MK; applicable only
if a master key has already
been loaded.

 Programmers Guide Girgit

 232
 © Verifone Inc. All rights reserved.

decryptKeyIndex(int) The index (0 to 99) of the
decryption key. If not set,
the method will use the
`keyId`. The last key will be
overwritten if specified.

Return Values

A Boolean value:

true: Indicates that the operation was successful.

false: Indicates that the operation failed.

See Also

• loadTEK loadTEKWithAlgorithmType()

• loadEncryptMainKey()

• loadMainKey()

• loadWorkKey()

• loadWorkKeyWithDecryptType()

loadWorkKeyEX()

This method is called to load a work key onto the Pinpad device with a specified decryption
type.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IPinpad.loadWorkKeyEX (int keyType,

int mkId, int wkId, int decKeyType, in byte[] key, in byte[] checkValue, in

Bundle extend)

Parameters

 Programmers Guide Girgit

 233
 © Verifone Inc. All rights reserved.

keyType Specifies the type of work key being loaded, including:

 1: MAC key.

2: PIN key.

3: TD key.

5: (SM4) MAC key.

6: (SM4) PIN key.

7: (SM4) TD key.

9: (AES) MAC key.

10: (AES) PIN key.

11: (AES) TD key.

mkId The master key's ID for decrypting a work key.

wkId The work key ID ranging from 0 to 99.

decKeyType Select the type of decryption key.

 0x00: 3DES master key.

0x01: Transport key.

0x02: SM4 master key.

0x03: AES master key.

0x04: SM4 transport key.

0x05: AES transport key.

0x80: CBC 3DES master key.

0x81: CBC transport key.

 Programmers Guide Girgit

 234
 © Verifone Inc. All rights reserved.

0x82: CBC SM4 master key.

0x83: CBC AES master key.

0x84: CBC SM4 transport key.

0x85: CBC AES transport key.

key The cryptographic key for decrypting the work key.

checkValue A byte array used for integrity verification of the key being
loaded (null for none).

extend A Bundle object that allows you to pass additional optional
parameters related to the key loading process.

 isCBCType(boolean) Indicates whether the mk
encryption mode is in CBC mode.
The default is set to false.

initVec(byte[]) An initialization vector used in CBC
mode for encryption and decryption
processes. The default is set to 16
byte 0.

Return Values

A Boolean Value:

true: Indicates that the operation was successful.

false: Indicates that the operation failed.

See Also

• loadWorkKey()

• loadEncryptMainKey()

• loadEncryptMainKeyWithAlgorithmType()

• loadMainKey()

• loadMainKeyWithAlgorithmType()

 Programmers Guide Girgit

 235
 © Verifone Inc. All rights reserved.

clearKey()

This method is called to remove both master key and work key from the Pinpad. It is
applicable for devices running on K21 version greater than 169.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IPinpad.clearKey (int keyId,

int keyType)

Parameters

keyId Specifies the ID of the key that needs to be cleared.

keyType Specifies the type of key that the user wants to clear from the Pinpad’s
memory.

 0x00: DES MK.

0x01: SM4 MK.

0x02: AES MK.

0x10: DES PIN.

0x11: SM4 PIN.

0x12: AES PIN.

0x20: DES MAC.

0x21: SM4 MAC.

0x22: AES MAC.

0x30: DES DATA.

0x31: SM4 DATA.

0x32: AES DATA.

 Programmers Guide Girgit

 236
 © Verifone Inc. All rights reserved.

0x40: DUKPT.

Return Values

A Boolean value:

true: Indicates that the key was successfully cleared.

false: Indicates that the operation failed.

loadDukptKeyEX()

This method is used to load the DUKPT key with additional configuration options.

NOTE
This method has been deprecated. Refer to
IDUKPT.aidl.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IPinpad.loadDukptKeyEX (int keyId,

in byte[] ksn, in byte[] key, in byte[] checkValue, in Bundle extend)

Parameters

keyId An index ranging from 0 to 4.

ksn The KSN associated with the DUKPT key.

key The cryptographic key that is encrypted using the TEK.

checkValue To validate the integrity and suitability of the cryptographic key. The
default is set to null.

 Programmers Guide Girgit

 237
 © Verifone Inc. All rights reserved.

extend The extend parameter, which is of type Bundle, is used to pass additional
configuration options when loading the DUKPT key.

 loadPlainKey(boolean) Indicates whether to loadPlainKey in
unencrypted format or as an encrypted
key.

TEKIndex(int) If loadPlainKey is set to false, you need
to specify the TEKIndex, which
indicates the index of the TEK to use.

Return Values

A Boolean value:

true: Indicates that the DUKPT key was successfully loaded onto the Pinpad.

false: Indicates that the operation failed.

loadTEKEX()

This method is used to load a plain TEK with specific parameters onto the Pinpad device.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IPinpad.loadTEKEX (int keyId,

in byte[] key, in byte algorithmType, in byte[] checkValue, in Bundle extend)

Parameters

keyId An index ranging from 0 to 99.

key The cryptographic key that is encrypted using the TEK.

algorithmType The type of algorithm used for encryption.

 0x01: 3DES encrypted key.

 Programmers Guide Girgit

 238
 © Verifone Inc. All rights reserved.

0x02: 3DES plain key.

0x03 SM4 encrypted key.

0x04: SM4 plain key.

0x05: AES encrypted key.

0x06: AES plain key.

0x81: CBC 3DES encrypted key.

0x82: CBC 3DES plain key.

0x83: CBC SM4 encrypted key.

0x84: CBC SM4 plain key.

0x85: CBC AES encrypted key.

0x86: CBC AES plain key.

checkValue To validate the integrity and suitability of the cryptographic key.

extend The extend parameter, which is of type Bundle, is used to pass
additional configuration options when loading the DUKPT key.

 isCBCType(boolean) Indicates whether the mk
encryption mode is in CBC mode.
The default is set to false.

initVec(byte[]) An initialization vector used in CBC
mode for encryption and decryption
processes. The default is set to 16
byte 0.

Return Values

A Boolean value:

true: Indicates that the TEK was successfully loaded onto the Pinpad.

 Programmers Guide Girgit

 239
 © Verifone Inc. All rights reserved.

false: Indicates that the operation failed.

See Also

• loadTEK()

• loadEncryptMainKey()

• loadEncryptMainKeyWithAlgorithmType()

calculateByWorkKey()

This method is used to perform encryption or decryption of data using a specified work key.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPinpad.calculateByWorkKey (int

keyId, int keyType, int encAlg, int encMode, int encFlag, in byte[] data, in

Bundle extend)

Parameters

keyId Indicates the index of the data key used for the cryptographic operation. It
ranges from 0 to 99.

keyType Specifies the type of key being used.

encAlg This indicates the encryption algorithm to be used.

 0x01: 3DES.

0x02: SM4.

0x03: AES.

encMode This indicates the mode of operation for the encryption algorithm.

 0x01: ECB.

0x02: CBC.

 Programmers Guide Girgit

 240
 © Verifone Inc. All rights reserved.

encFlag Indicates an encryption flag that provides additional control over the
encryption or decryption process.

 0x00: Encrypt.

0x01: Decrypt.

data The source data to be encrypted or decrypted.

extend A Bundle parameter called extend, which allows for additional configuration
options, including specifying an initialization vector for encryption modes
that require it, such as CBC.

Return Values

A byte array containing the result of the encryption or decryption operation.

calculateByMSKey()

This method is used for performing encryption or decryption operations using the
specified Master Key (MK) on the Pinpad device.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPinpad.calculateByMSKey (int keyId,

int keyType, int algorithmMode, in byte[] data, in Bundle extend)

Parameters

keyId The index for the data key, ranging from 0 to 99.

keyType Specifies the type of key being used.

 0x01: Master key.

0x02: SM4 master key.

0x03: AES master key.

 Programmers Guide Girgit

 241
 © Verifone Inc. All rights reserved.

algorithmMode The mode of the encryption algorithm:

 0x00: Encrypt ECB

0x01: Decrypt ECB.

0x02: Encrypt CBC

0x03: Decrypt CBC.

data A byte array representing the input data that the user wants to
encrypt or decrypt.

extend A Bundle containing additional configuration parameters:

 initVec(byte[]) An optional initialization vector for the CBC
mode. If not set, it defaults to null.

Return Values

A byte array containing the result of the encryption or decryption operation.

2.2.15 IPBOC

Package: com.vfi.smartpos.deviceservice.aidl.IPBOC

Overview:

The IPBOC interface is part of the AIDL framework, intended to facilitate communication between
Android applications and POS devices. It provides several methods for card processing, transaction
management, device control, callbacks and listeners and error handling.

Public Member Function:

Modifier and Type Method

void checkCard (in Bundle cardOption, int timeout, CheckCardListener listener)

 Programmers Guide Girgit

 242
 © Verifone Inc. All rights reserved.

void stopCheckCard ()

void readUPCard (UPCardListener listener)

void startPBOC (int transType, in Bundle intent, PBOCHandler handler)

void startEMV (int processType, in Bundle intent, PBOCHandler handler)

void abortPBOC ()

boolean updateAID (int operation, int aidType, String aid)

boolean updateRID (int operation, String rid)

Void importAmount (long amount)

void importAppSelect (int index)

void importPin (int option, in byte[] pin)

void importCertConfirmResult (int option)

void importCardConfirmResult (boolean pass)

void inputOnlineResult (in Bundle onlineResult, OnlineResultHandler handler)

void setEMVData (in List< String > tlvList)

String getAppTLVList (in String[] taglist)

byte[] getCardData (String tagName)

String getPBOCData (String tagName)

CandidateAppInfo getCandidateAppInfo ()

 Programmers Guide Girgit

 243
 © Verifone Inc. All rights reserved.

String[] getAID (int type)

String[] getRID ()

int getProcessCardType ()

Member Function Documentation:

checkCard()

This method is used to initiate a card reading operation in a non-blocking manner, allowing
Android applications to interact with POS devices effectively.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPBOC.checkCard (in Bundle cardOption,

int timeout, CheckCardListener listener)

Code Snippet

public void My17startPBOC() {

 Bundle cardOption = new Bundle();

 cardOption.putBoolean("supportMagCard", true);

 cardOption.putBoolean("supportICCard", true);

 cardOption.putBoolean("supportRFCard", true);

 ipboc.checkCard(cardOption, 30, new CheckCardListener.Stub() {

 String msg;

 @Override

 public void onCardSwiped(Bundle track) throws RemoteException {

 ipboc.stopCheckCard();

 }

 @Override

 public void onCardPowerUp() throws RemoteException {

 // Smart card

 ipboc.stopCheckCard();

 try {

 Bundle intent1 = intent;

 // don't change transaction type for test case K17, card type will

be changed according the check card result for other test case

 if (intent.getBoolean(BUNDLE_NOT_CHANGE_CARDTYPE) == false)

 Programmers Guide Girgit

 244
 © Verifone Inc. All rights reserved.

 intent1.putInt(BUNDLE_STARTPBOCPARAM_CARDTYPE, 0);

 ipboc.startPBOC(transType, intent1, pbochandler);

 } catch (RemoteException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void onCardActivate() throws RemoteException {

 // CTLS

 ipboc.stopCheckCard();

 try {

 Bundle intent1 = intent;

 // don't change transaction type for test case K17, card type will

be changed according the check card result for other test case

 if (intent.getBoolean(BUNDLE_NOT_CHANGE_CARDTYPE) == false)

 intent1.putInt(BUNDLE_STARTPBOCPARAM_CARDTYPE, 1);

 ipboc.startPBOC(transType, intent1, pbochandler);

 } catch (RemoteException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void onTimeout() throws RemoteException {

 ipboc.stopCheckCard();

 }

 @Override

 public void onError(int error, String message) throws RemoteException {

 // msg = "error" + error + message;

 ipboc.stopCheckCard();

 if (error == 3)

 message1.getData().putString("message", msg + "Fallback");

 else

 message1.getData().putString("message", msg);

 if (error == 3) {

 }

 }

 });

 }

Parameters

cardOption Indicates the types of cards that the POS device should support.

 Programmers Guide Girgit

 245
 © Verifone Inc. All rights reserved.

 supportMagCard(boolean) Indicates support for the
magnetic card.

supportICCard(boolean) Indicates support for the IC
card.

supportRFCard(boolean) Indicates support for the CTLS
card.

timeout The timeout duration in seconds.

listener A callback interface to notify the result of the card reading operation.
Refer to CheckCardListener.

Return Values

void

See Also

• stopCheckCard()

• startPBOC()

• startEMV()

• Refer to CheckCardListener interface under Section 2.2.1.

stopCheckCard()

This method is used to stop an ongoing card reading operation that was initiated by the
checkCard() method.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPBOC.stopCheckCard ()

Parameters

None.

file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_i_p_b_o_c.html%23af30192e730d4de68ab0e2f3ded78a6d3

 Programmers Guide Girgit

 246
 © Verifone Inc. All rights reserved.

Return Values

void

See Also

• checkCard()

• startPBOC()

• startEMV()

• Refer to CheckCardListener interface under Section 2.2.1.

readUPCard()

This method is used to read a UP card, including cards that have a chip embedded in the
SIM card.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPBOC.readUPCard (UPCardListener

listener)

Parameters

listener A callback interface that is used to handle the results of the UP card
reading operation. Refer to UPCardListener.

Return Values

void

See Also

UPCardListener

 Programmers Guide Girgit

 247
 © Verifone Inc. All rights reserved.

startPBOC()

This method is used to initiate a PBOC transaction, allowing users to make payments by
simply tapping or waving their card or mobile device near the POS terminal.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPBOC.startPBOC (int transType,

in Bundle intent, PBOCHandler handler)

Parameters

transType Specifies the type of transaction to be performed.

 EC_BALANCE(1) Query the balance.

TRANSFER(2) Transfer funds.

EC_LOAD(3) Load electronic cash (EC LOAD).

EC_LOAD_U(4) EC LOAD without assigning an
account.

EC_LOAD_CASH(5) EC LOAD with cash.

EC_LOAD_CASH_VOID(6) Void an EC LOAD with cash.

PURCHASE(7) Make a purchase.

Q_PURCHASE(8) Quick purchase.

CHECK_BALANCE(9) Get the balance.

PRE_AUTH(10) Pre-authorization.

SALE_VOID(11) Void a sale.

SIMPLE_PROCESS(12) Simple processing transaction.

REFUND(13) Process a refund (full process).

 Programmers Guide Girgit

 248
 © Verifone Inc. All rights reserved.

intent A Bundle that contains additional information or parameters needed for
the transaction.

 cardType(int) Specifies the card type.

CARD_INSERT(0) For smart IC card.

CARD_RF(1) For CTLS card.

authAmount(long) The transaction amount that
requires authorization.

isSupportQ(boolean) Indicates support for the
QPBOC.

isSupportSM(boolean) Indicates support for the SM.

isQPBOCForceOnline(boolean) Indicates if the QPBOC is forced
to go online.

merchantName(String) The name of the merchant.

merchantId(String) The merchant’s ID.

terminalId(String) The terminal’s ID.

handler A callback interface that receives the result of the EMV transaction. Refer
to PBOCHandler under Section 2.2.6.

Return Values

void

See Also

startEMV()

 Programmers Guide Girgit

 249
 © Verifone Inc. All rights reserved.

startEMV()

This method is used to initiate an EMV transaction, allowing for secure processing of chip
card payments.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPBOC.startEMV (int processType,

in Bundle intent, PBOCHandler handler)

Parameters

processType An integer specifies the type of processing for the transaction.

 1: Full process.

2: Simple process.

intent A Bundle that contains additional information or parameters needed for
the transaction.

 cardType(int) Specifies the card type.

CARD_INSERT(0) For smart IC card.

CARD_RF(1) For CTLS card.

transProcessCode(byte) A 1 Byte code representing
translation type (9C first two
digits of the ISO 8583:1987
Processing Code).

authAmount(long) The transaction amount that
requires authorization.

isSupportQ(boolean) Indicates support for the
QPBOC.

isSupportSM(boolean) Indicates support for the SM.

 Programmers Guide Girgit

 250
 © Verifone Inc. All rights reserved.

isQPBOCForceOnline(boolean) Indicates if the QPBOC is forced
to go online.

merchantName(String) The name of the merchant.

merchantId(String) The merchant’s ID.

terminalId(String) The terminal’s ID.

handler A callback interface to handle the results of the PBOC transaction. Refer
to PBOCHandler under Section 2.2.6.

Return Values

void

See Also

• startPBOC()

• abortPBOC()

abortPBOC()

This method is used to terminate an active PBOC transaction, ensuring that the system
can recover from any errors without leaving the transaction in an uncertain state.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPBOC.abortPBOC ()

Parameters

None.

Return Values

void

 Programmers Guide Girgit

 251
 © Verifone Inc. All rights reserved.

updateAID()

This method is used to update the AID for payment applications in a payment processing
system. This method allows user to perform three main operations (like add, remove, and
clear all AIDs) related to the AIDs.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IPBOC.updateAID (int operation,

int aidType, String aid)

Parameters

operation Specifies the type of operation to perform on the AID.

 1: (append) Adds a new AID to the existing list of applications.

2: (remove) Removes a specific AID from the list.

3: (clear all) Clears all AIDs, resetting the application settings.

aidType Indicates the type of AID being managed.

 1: (contact) Refers to a traditional smart card application that
requires physical contact with the reader.

2: (contactless) Refers to applications that utilize contactless
technology, allowing transactions through NFC or RFID.

aid The actual AID to be added, removed, or cleared. This identifier is crucial
for selecting the appropriate payment application during transactions.

Return Values

A Boolean value:

true: Indicates that the operation was successful.

false: Indicates that the operation failed.

 Programmers Guide Girgit

 252
 © Verifone Inc. All rights reserved.

See Also

getAID()

updateRID()

This method is used to update the RID associated with the CA public key in a payment
processing system. This method allows user to perform three main operations (like add,
remove, and clear all RIDs) related to the RIDs.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IPBOC.updateRID (int operation,

String rid)

Parameters

operation Specifies the type of operation to perform on the RID.

 1: (append) Add a new RID associated with a new CA public
key.

2: (remove) Remove an existing RID for a CA public key.

3: (clear all) Clears all RIDs, resetting the application settings.

rid The actual RID that corresponds to the CA public key being updated.

Return Values

A Boolean value:

true: Indicates that the operation was successful.

false: Indicates that the operation failed.

See Also

getRID()

 Programmers Guide Girgit

 253
 © Verifone Inc. All rights reserved.

importAmount()

This method is essential for importing and handling monetary values within financial
applications. It serves to register the amount, which can then be used for further
processing, like initiating EMV transactions.

NOTE
This method has been deprecated.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPBOC.importAmount (long amount)

Parameters

amount Indicates a monetary value to be imported, specified in the smallest
currency unit.

Return Values

void

See Also

startEMV()

 Programmers Guide Girgit

 254
 © Verifone Inc. All rights reserved.

importAppSelect()

This method is used to select a specific application from a multi-application card. It allows
the system to determine which payment application to use for processing a transaction
based on the provided index.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPBOC.importAppSelect (int index)

Parameters

index The index of the application to select.

 Start from 1: This indicates the first application in the list.

0: Indicates a cancel action.

Return Values

void

See Also

Refer to PBOCHandler.onSelectApplication() method under Section 2.2.6.

importPin()

This method is used to import or process the PIN for authentication during financial
transactions.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPBOC.importPin (int option,

in byte[] pin)

Parameters

 Programmers Guide Girgit

 255
 © Verifone Inc. All rights reserved.

option Specifies the action to be taken regarding the PIN.

 CANCEL (0): Indicates that the PIN entry should be cancelled.

CONFIRM (1): Indicates that the PIN entry should be confirmed
and processed.

pin An array of bytes that indicates the PIN data.

Return Values

void

See Also

Refer to PBOCHandler.onRequestInputPIN() method under Section 2.2.6.

importCertConfirmResult()

This method is part of the Unified Payment (UP) card processing flow, specifically related
to certificate confirmation. This method is called to confirm the result of a certificate
validation process during a transaction, to secure payment or authentication processes.
Certificates are used to verify the authenticity of the card, issuer, or transaction, ensuring
that the transaction is legitimate and secure.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPBOC.importCertConfirmResult (int

option)

Parameters

option Indicates the result of the cardholder verification process.

 CANCEL (0): Indicates that the verification process was
cancelled (bypassed).

 Programmers Guide Girgit

 256
 © Verifone Inc. All rights reserved.

CONFIRM (1): Indicates that the verification was successful and
confirmed.

 NOTMATCH (2): Indicates that the entered information does not
match the cardholder's data.

Return Values

void

See Also

Refer to PBOCHandler interface under Section 2.2.6.

importCardConfirmResult()

This method is part of the UP card processing flow, specifically related to cardholder
verification during a payment transaction. This method is used to confirm the outcome of a
cardholder authentication process, such as when the system verifies that the person using
the card is authorized to complete the transaction.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPBOC.importCardConfirmResult (boolean

pass)

Parameters

pass Indicates the outcome of the card verification.

 true: The card verification was successful.

false: The card verification failed.

Return Values

void

 Programmers Guide Girgit

 257
 © Verifone Inc. All rights reserved.

See Also

Refer to PBOCHandler.onConfirmCardInfo() method under Section 2.2.6.

inputOnlineResult()

This method is used to import and process the response received from an online
transaction, allowing the system to take appropriate actions based on the result.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPBOC.inputOnlineResult (in Bundle

onlineResult, OnlineResultHandler handler)

Parameters

onlineResult A Bundle that contains the results of the online operation. It includes:

 isOnline(boolean) Indicates whether the transaction was
processed online.

respCode(String) The response code returned from the online
operation, indicating the status of the
transaction.

authCode(String) The authorization code provided for the
transaction, if applicable.

field55(String) The response data for field 55, which may
contain additional transaction details or
messages.

handler This is an instance of an interface or class intended to manage the
results of the online transaction. Refer to OnlineResultHandler under
Section 2.2.7.

Return Values

void

 Programmers Guide Girgit

 258
 © Verifone Inc. All rights reserved.

See Also

Refer to PBOCHandler.onRequestOnlineProcess() method under Section 2.2.6.

setEMVData()

This method is used to set the EMV kernel data before initiating the EMV transaction flow.
Properly setting this data is essential for the transaction's success, as it includes important
information required for processing.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IPBOC.setEMVData (in List< String >

tlvList)

Code Snippet

IPBOC ipboc;

EMVL2 emvl2;

public void K12001() {

 byte[] acquirerID = {(byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,

(byte) 0x00, (byte) 0x00};

 byte[] termCap = {(byte) 0xe0, (byte) 0xf1, (byte) 0xc8};

 byte[] addTermCap = {(byte) 0xe0, (byte) 0x00, (byte) 0xF0, (byte) 0xA0,

(byte) 0x01};

 byte[] countryCode = {(byte) 0x01, (byte) 0x56};

 byte[] currencyCode = {(byte) 0x01, (byte) 0x56};

 byte[] termType = {(byte) 0x22};

 Collection<String> tlvList = new ArrayList<String>();

 tlvList.add(Utils.byte2HexStr(Utils.asc2Bcd("9F15020000")));

 tlvList.add(Utils.byte2HexStr(Utils.asc2Bcd("9F160F")) +

Utils.byte2HexStr("123456789012345".getBytes()));

 tlvList.add(Utils.byte2HexStr(Utils.asc2Bcd("9F4E0D")) +

Utils.byte2HexStr("Verifone Test".getBytes()));

 tlvList.add(Utils.byte2HexStr(Utils.asc2Bcd("9F1C08")) +

Utils.byte2HexStr("12345678".getBytes()));

 tlvList.add(Utils.byte2HexStr(Utils.asc2Bcd("9F0106")) +

Utils.byte2HexStr(acquirerID));

 tlvList.add(Utils.byte2HexStr(Utils.asc2Bcd("9F1E08")) +

Utils.byte2HexStr("50342027".getBytes()));

 Programmers Guide Girgit

 259
 © Verifone Inc. All rights reserved.

 tlvList.add(Utils.byte2HexStr(Utils.asc2Bcd("9F3501")) +

Utils.byte2HexStr(termType));

 tlvList.add(Utils.byte2HexStr(Utils.asc2Bcd("9F3303")) +

Utils.byte2HexStr(termCap));

 tlvList.add(Utils.byte2HexStr(Utils.asc2Bcd("9F4005")) +

Utils.byte2HexStr(addTermCap));

 tlvList.add(Utils.byte2HexStr(Utils.asc2Bcd("9F1A02")) +

Utils.byte2HexStr(countryCode));

 tlvList.add(Utils.byte2HexStr(Utils.asc2Bcd("5F2A02")) +

Utils.byte2HexStr(currencyCode));

 tlvList.add(Utils.byte2HexStr(Utils.asc2Bcd("5F3601" + "02")));

 tlvList.add(Utils.byte2HexStr(Utils.asc2Bcd("9F3C02")) +

Utils.byte2HexStr(currencyCode));

 tlvList.add(Utils.byte2HexStr(Utils.asc2Bcd("9F3D0102")));

 ipboc.setEMVData(tlvList);

}

Parameters

tlvList This list contains Tag-Length-Value (TLV) formatted strings. The method
supports setting the following tags, which are essential for EMV
transaction processing. If there is a conflict with an AID list that has the
same tag, the AID list takes priority over this method.

 9F33: Terminal Capability.

9F15: Merchant Category Code (MCC).

9F16: Merchant Identifier.

9F4E: Merchant Name.

9F1C: Terminal Identifier.

9F35: Terminal Type.

9F3C: Transaction Reference Currency Code.

9F3D: Transaction Reference Currency Exponent.

5F2A: Transaction Currency Code.

5F36: Transaction Currency Exponent.

9F1A: Terminal Country Code.

 Programmers Guide Girgit

 260
 © Verifone Inc. All rights reserved.

9F40: Additional Terminal Capability.

Return Values

void

getAppTLVList()

This method is called to retrieve a list of TLV data from the PBOC kernel for specific tags
related to the EMV application.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IPBOC.getAppTLVList (in String[]

taglist)

Code Snippet

{

 String[] strlist = {"9F33", "9F40", "9F10", "9F26", "95", "9F37", "9F1E",

"9F36",

 "82", "9F1A", "9A", "9B", "50", "84", "5F2A", "8F"};

 String strs = ipboc.getAppTLVList(strlist);

 }

Parameters

taglist An array of strings representing the tags you want to query from the
PBOC kernel.

Return Values

Returns either of the two values:

TLV Format: The method returns data in the TLV format.

Null: Indicating that there is no response available.

 Programmers Guide Girgit

 261
 © Verifone Inc. All rights reserved.

getCardData()

This method is called to retrieve the EMV card data based on a specified tag.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IPBOC.getCardData (String tagName)

Parameters

tagName The name of the tag for which the data is requested.

Return Values

The EMV data associated with the specified tag name.

See Also

getPBOCData()

getPBOCData()

This method is used to retrieve the specific PBOC or EMV data, such as card number,
validity date, card serial number, and other relevant details.

Prototype

String com.vfi.smartpos.deviceservice.aidl.IPBOC.getPBOCData (String tagName)

Parameters

tagName The name of the tag for which the PBOC data is requested. It includes:

 PAN card No. Primary Account Number (card number).

TRACK2 Track data from Track 2 of the magnetic stripe.

CARD_SN Card Serial Number.

 Programmers Guide Girgit

 262
 © Verifone Inc. All rights reserved.

EXPIRED_DATE Expiration date of the card.

DATE Current date.

TIME Current time.

BALANCE Current balance.

CURRENCY Currency code associated with the card.

Return Values

The requested PBOC data associated with the specified tag name.

See Also

getCardData()

getCandidateAppInfo()

This method is used to retrieve candidate application information, specifically for
uploading electronic signatures (e-signatures) during EMV transactions.

Prototype

CandidateAppInfo com.vfi.smartpos.deviceservice.aidl.IPBOC.getCandidateAppInfo

()

Parameters

None.

Return Values

A list of strings containing details about the candidate applications.

 Programmers Guide Girgit

 263
 © Verifone Inc. All rights reserved.

getAID()

This method is used to retrieve the AID based on a specified application type during EMV
transactions.

Prototype

String[] com.vfi.smartpos.deviceservice.aidl.IPBOC.getAID (int type)

Code Snippet

@brief get the AID parameter

 @param type - 1-contact aid 2-contactless aid

 @return null if the AID is unavailable

 \code

 demo returns from getAID(1)

{"9F0607A0000000031010DF0101009F09020140DF1105C000000000DF12050000000000DF130

500000000009F1B0400000000DF1504000000009F7B06000000000000DF1906000000000000DF

20060099999999995F2A0201569F1A0201569F3303E0F9C89F4005FF00F0A0019F660426000080

9F350122DF150400000000DF160101DF170101DF14039F3704DF1801009F1D00",

"9F0607A0000000032010DF0101009F09020140DF1105D84004A800DF1205D84000F800DF13050

0100000009F1B0400000000DF1504000000009F7B06000000000000DF1906000000000000DF200

60099999999995F2A0201569F1A0201569F3303E0F9C89F4005FF00F0A0019F6604260000809F3

50122DF150400000000DF160101DF170101DF14039F3704DF1801009F1D00"

Parameters

type The type of application for which the AID is requested.

 1: Contact AID for EMV cards that require physical contact.

2: Contactless AID for EMV cards that support contactless
transactions.

Return Values

A string representing the AID of the application.

See Also

 Programmers Guide Girgit

 264
 © Verifone Inc. All rights reserved.

updateAID()

getRID()

This method is used to retrieve the RID associated with the EMV transaction.

Prototype

String[] com.vfi.smartpos.deviceservice.aidl.IPBOC.getRID ()

Code Snippet

demo returns from getRID()

{"9F0605A0000000039F220199DF050420291231DF03144ABFFD6B1C51212D05552E431C5B

17007D2F5E6DDF070101DF060101DF028180AB79FCC9520896967E776E64444E5DCDD6E136

11874F3985722520425295EEA4BD0C2781DE7F31CD3D041F565F747306EED62954B17EDABA3

A6C5B85A1DE1BEB9A34141AF38FCF8279C9DEA0D5A6710D08DB4124F041945587E20359BAB4

7B7575AD94262D4B25F264AF33DEDCF28E09615E937DE32EDC03C54445FE7E382777DF04030

00003"}

Parameters

None.

Return Values

Returns either of the two values:

RID: The method returns the available RID.

Null: Indicating that the RID is unavailable.

See Also

updateRID()

 Programmers Guide Girgit

 265
 © Verifone Inc. All rights reserved.

getProcessCardType()

This method is used to obtain the CTLS card type (In onRequestOnlineProcess() callback
you can use this interface to obtain the CTLS card type) during an EMV transaction.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IPBOC.getProcessCardType ()

Parameters

None.

Return Values

The type of card currently being processed during an EMV transaction.

0: No Type Indicates an unknown or unsupported card type.

1: JCB_CHIP Represents a JCB chip card.

2: JCB_MSD Represents a JCB magnetic stripe card.

3: JCB_Legcy Represents a legacy JCB card.

4: VISA_w1 Represents a Visa card using the w1 processing.

5: VISA_w3 Represents a Visa card using the w3 processing.

6: Master_EMV Represents a MasterCard EMV chip card.

7: Master_MSD Represents a MasterCard magnetic stripe card.

8: qPBOC_qUICS. Represents a card using qPBOC/qUICS standards.

See Also

Refer to PBOCHandler.onRequestOnlineProcess() method under Section 2.2.6.

 Programmers Guide Girgit

 266
 © Verifone Inc. All rights reserved.

2.2.16 IInsertCardReader

Package: com.vfi.smartpos.deviceservice.aidl.IInsertCardReader

Overview:

This interface is a critical component for interacting with smart card readers. It includes methods for
powering up and down the card reader, checking the presence of various types of cards, and executing
the APDU commands. These functionalities are essential for applications that require secure and efficient
card transactions.

Public Member Functions:

Modifier and Type Method

boolean powerup ()

boolean powerDown ()

boolean isCardIn ()

byte[] exchangeApdu (in byte[] apdu)

boolean isPSAMCardExists ()

Member Function Documentation:

powerUp()

This method is invoked for card readers that require the physical insertion of cards, often
referred as contact readers. This method is essential for powering on the reader and
preparing it to interact with cards inserted into a designated slot.

Prototype

 Programmers Guide Girgit

 267
 © Verifone Inc. All rights reserved.

boolean com.vfi.smartpos.deviceservice.aidl.IInsertCardReader.powerUp ()

Parameters

None.

Return Values

A Boolean value:

true: Indicates that the card reader has been successfully powered up and is ready
for use.

false: Indicates a failure to power up the card reader.

powerDown()

This method is called to power off the smart card reader, ensuring it is no longer active and
conserving battery life or reducing wear on the device.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IInsertCardReader.powerDown ()

Parameters

None.

Return Values

A Boolean value:

true: Indicates that the card reader has been successfully powered down.

false: Indicates a failure to power down the card reader.

 Programmers Guide Girgit

 268
 © Verifone Inc. All rights reserved.

isCardIn()

This method is used to check whether a smart card (contact card or IC card) is currently
inserted into the card reader.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IInsertCardReader.isCardIn ()

Parameters

None.

Return Values

A Boolean value:

true: Indicates that a card is currently available.

false: Indicates that a card is unavailable.

exchangeApdu()

This method is fundamental for the APDU data communication between an application
and a smart card. This method enables the sending of commands to the card and
receiving its responses, allowing for various interactions.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IInsertCardReader.exchangeApdu (in

byte[] apdu)

Parameters

apdu The APDU command to be sent to the smart card, structured
according to the command requirements.

 Programmers Guide Girgit

 269
 © Verifone Inc. All rights reserved.

Return Values

A byte array containing the response from the smart card. Possible value:

Valid Response: A non-null byte array indicating the data returned by the card.

Null: Indicates that no response was received from the smart card.

isPSAMCardExists()

This method is used to check whether a PSAM card is currently present in the card reader.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IInsertCardReader.isPSAMCardExists

()

Parameters

None.

Return Values

A Boolean value:

true: Indicates that the PSAM card is currently in place and detected by the card
reader.

false: Indicates that the PSAM card is not in place or not detected.

 Programmers Guide Girgit

 270
 © Verifone Inc. All rights reserved.

2.2.17 IDeviceService

Package: com.vfi.smartpos.deviceservice.aidl.IDeviceService

Overview:

This interface acts as a central point in an Android application, facilitating access to various peripheral
device services associated with a terminal. Each method in this interface connects to a specific
peripheral, enabling operations related to that device.

Public Member Functions:

Modifier and Type Method

IBeeper getBeeper ()

ILed getLed ()

ISerialPort getSerialPort (String deviceType)

IScanner getScanner (int cameraId)

IMagCardReader getMagCardReader ()

IInsertCardReader getInsertCardReader (int slotNo)

IRFCardReader getRFCardReader ()

IPinpad getPinpad (int kapId)

IPrinter getPrinter ()

IPBOC getPBOC ()

 Programmers Guide Girgit

 271
 © Verifone Inc. All rights reserved.

IDeviceInfo getDeviceInfo ()

IExternalSerialPort getExternalSerialPort ()

IUsbSerialPort getUsbSerialPort ()

ISmartCardReader getSmartCardReader (int slotNo)

IEMV getEMV ()

IDukpt getDUKPT ()

IFelica getFelica ()

IUtils getUtils ()

WirelessConnectListener getWirelessConnectionMgr ()

IGirgitExt getGirgitExt ()

IFFBase getFFBase ()

Member Function Documentation:

getBeeper()

This method is called to provide access to a beeper service within an Android application.
This allows applications to interact with the beeper for various purposes, such as alerting
users or providing audio feedback.

 Programmers Guide Girgit

 272
 © Verifone Inc. All rights reserved.

Prototype

IBeeper com.vfi.smartpos.deviceservice.aidl.IDeviceService.getBeeper ()

Parameters

None.

Return Values

An object of type IBeeper. This object provides methods to control beeper functionalities
within your Android application. Refer to IBeeper.aidl.

See Also

Refer to IBeeper interface under Section 2.2.2.

getLed()

This method is used to obtain the current status or configuration of the device's Light
Emitting Diode (LED). This could include information such as whether the LED is on or off,
its color, or its blinking pattern.

Prototype

ILed com.vfi.smartpos.deviceservice.aidl.IDeviceService.getLed ()

Parameters

None.

Return Values

An object of type ILed, which provides access to an interface that allows interaction with
LED functionalities. Refer to ILed.aidl.

See Also

 Programmers Guide Girgit

 273
 © Verifone Inc. All rights reserved.

Refer to ILed interface Appendix A Supporting Classes 5.

getSerialPort()

This method is used to retrieve a serial port connection for a specific type of device,
identified by the deviceType parameter. It enables communication between the system
and various hardware components (such as printers, scanners, card readers, etc.) via serial
communication protocols.

Get the ISerialPort for serial port connection for non X990 terminal. If the application
wants to use more than one serial port during single execution e.g. SERIAL_0 and
SERIAL_8, then the application must invoke this API with both the port first i.e.
getSerialPort(SERIAL_0) followed by getSerialPort(SERIAL_8) before trying to open and
initializing from either of the ISerialPort object.

Prototype

ISerialPort com.vfi.smartpos.deviceservice.aidl.IDeviceService.getSerialPort

(String deviceType)

Parameters

deviceType A String representing the type of serial device user want to access.

 Physical
Serial TTY

These are Physical Serial TTY, ttyHSL0,
ttyHSL1,"SERIAL_0" "SERIAL_1" "SERIAL_2"
"SERIAL_3" "SERIAL_4" "SERIAL_5" "SERIAL_6"
"SERIAL_7" e.g. "SERIAL_0" These serial ports
(e.g., ttyHSL0) are hardware ports on devices
such as the T650c and T650t, the cable should
be connected to the RS232 port on the terminal
side.

Virtual
Serial TTY

These are Virtual Serial TTY, ttyGS1, ttyGS2,
"SERIAL_8" "SERIAL_9" "SERIAL_10"
"SERIAL_11" "SERIAL_12" "SERIAL_13"
"SERIAL_14" "SERIAL_15" e.g. "SERIAL_8". These

 Programmers Guide Girgit

 274
 © Verifone Inc. All rights reserved.

virtual serial ports are established when devices
like the T650c and T650t are connected via a
USB Type-C to Type-A cable.

Dongle
Serial TTY

These are Dongle Serial TTY, ttyACM0, ttyACM1,
"SERIAL_16" "SERIAL_17" "SERIAL_18"
"SERIAL_19" "SERIAL_20" "SERIAL_21"
"SERIAL_22" "SERIAL_23" e.g. "SERIAL_16"
These are virtual serial ports associated with
dongles that create serial connections. For
example, when you connect one terminal
configured to use "SERIAL_8" (a virtual serial
port), it can communicate with another terminal,
which may then show up as a ttyACM port.

Dongle
Serial TTY

These are Dongle Serial TTY, ttyUSB0,
ttyUSB1,"SERIAL_32" "SERIAL_33" "SERIAL_34"
"SERIAL_35" "SERIAL_36" "SERIAL_37"
"SERIAL_38" "SERIAL_39" e.g. "SERIAL_32".
These ports are used for USB to serial
converters, allowing serial communication via
USB connections. They are recognized on the
terminal as /dev/ttyUSB devices. The USB side
of the cable can be connected to the terminal
either through the USB-A port on devices like
the T650c or via the USB-C port with an On-
The-Go (OTG) connector.

Return Values

An object ISerialPort, it indicates that a method will return an instance of the
ISerialPort interface. Refer to ISerialPort.aidl.

See Also

ISerialPort

 Programmers Guide Girgit

 275
 © Verifone Inc. All rights reserved.

getScanner()

This method is used to retrieve an IScanner object associated with a specific camera,
identified by the provided cameraId.

Prototype

IScanner com.vfi.smartpos.deviceservice.aidl.IDeviceService.getScanner (int

cameraId)

Parameters

cameraId An integer parameter to specify which camera to use for scanning.

 0: Represents the rear camera.

1: Represents the front camera.

Return Values

An object of type IScanner interface, which allows for operations related to scanning.
Refer to IScanner.aidl.

See Also

Refer to IScanner interface under Section 2.2.12.

getMagCardReader()

This method is used to obtain a reference to a magnetic card reader, which can read data
from magnetic stripe cards.

Prototype

IMagCardReader

com.vfi.smartpos.deviceservice.aidl.IDeviceService.getMagCardReader ()

 Programmers Guide Girgit

 276
 © Verifone Inc. All rights reserved.

Parameters

None.

Return Values

An IMagCardReader object, which provides the necessary functions to interact with
magnetic stripe cards. Refer to IMagCardReader.aidl.

See Also

Refer to IMagCardReader Appendix A Supporting Classes 6.

getInsertCardReader()

This method is used to obtain an IInsertCardReader object for interacting with smart
cards and PSAM cards.

Prototype

IInsertCardReader

com.vfi.smartpos.deviceservice.aidl.IDeviceService.getInsertCardReader (int

slotNo)

Parameters

slotNo An integer parameter specifying the slot number for the card reader,
allowing you to choose the appropriate reader for your needs.

 0: Represents the IC card slot.

1: Represents the SAM1 card slot.

2: Represents the SAM2 card slot.

Return Values

 Programmers Guide Girgit

 277
 © Verifone Inc. All rights reserved.

An IInsertCardReader object, which provides the functionality to interact with the selected
card slot. With this object, user can perform operations like inserting cards, reading data
from the card, and handling actions specific to smart card and PSAM card. Refer to
IInsertCardReader.aidl.

See Also

Refer to IInsertCardReader interface under Section 2.2.16.

getRFCardReader()

This method retrieves a reference to a contactless card reader interface (IRFCardReader),
enabling the application to perform operations related to reading data from contactless
cards (such as NFC-enabled cards).

Prototype

IRFCardReader com.vfi.smartpos.deviceservice.aidl.IDeviceService.getRFCardReader

()

Parameters

None.

Return Values

An IRFCardReader object. This object provides the necessary functions to interact with
contactless cards. Refer to IRFCardReader.aidl.

See Also

IRFCardReader

 Programmers Guide Girgit

 278
 © Verifone Inc. All rights reserved.

getPinpad()

This method is used to obtain an IPinpad object, which allows interaction with a Pinpad for
entering and processing PIN or other input.

Prototype

IPinpad com.vfi.smartpos.deviceservice.aidl.IDeviceService.getPinpad (int kapId)

Parameters

kapId This parameter refers to the index of the key set for the Pinpad.

Return Values

An IPinpad object, which provides methods for managing Pinpad operations, such as
accepting PIN entries and handling input. Refer to IPinpad.aidl.

See Also

Refer to IPinpad interface under Section 2.2.14.

getPrinter()

This method is used to obtain an IPrinter object, which allows interaction with a printer
for printing tasks.

Prototype

IPrinter com.vfi.smartpos.deviceservice.aidl.IDeviceService.getPrinter ()

Parameters

None.

Return Values

 Programmers Guide Girgit

 279
 © Verifone Inc. All rights reserved.

An IPrinter object that provides functionalities for printing documents, images, or other
data. Refer to IPrinter.aidl.

See Also

Refer to IPrinter interface under Section 2.2.13.

getPBOC()

This method is used to obtain an IPBOC object, which facilitates interactions with PBOC or
EMV compliant card processing.

Prototype

IPBOC com.vfi.smartpos.deviceservice.aidl.IDeviceService.getPBOC ()

Parameters

None.

Return Values

An IPBOC object. This object allows you to manage transactions and interact with PBOC or
EMV cards. Refer to IPBOC.aidl.

See Also

Refer to IPBOC interface under Section 2.2.15.

 Programmers Guide Girgit

 280
 © Verifone Inc. All rights reserved.

getDeviceInfo()

This method is used to obtain an IDeviceInfo object, which provides access to
information about the device.

Prototype

IDeviceInfo com.vfi.smartpos.deviceservice.aidl.IDeviceService.getDeviceInfo ()

Parameters

None.

Return Values

An object of type IDeviceInfo, which provides access to various details about the device.

 Refer to IDeviceInfo.aidl.

See Also

Refer to IDeviceInfo interface under Section 2.2.17.

getExternalSerialPort()

This method is used to retrieve an instance of IExternalSerialPort, specifically for
accessing the serial port in a docking station.

Prototype

IExternalSerialPort

com.vfi.smartpos.deviceservice.aidl.IDeviceService.getExternalSerialPort ()

Parameters

None.

Return Values

 Programmers Guide Girgit

 281
 © Verifone Inc. All rights reserved.

An instance of IExternalSerialPort. Refer to IExternalSerialPort.aidl.

See Also

Refer to IExternalSerialPort Appendix A Supporting Classes 4.

getUsbSerialPort()

This method is called to facilitate communication with USB serial devices, such as X9 or
C520H, connected via an OTG cable.

Prototype

IUsbSerialPort

com.vfi.smartpos.deviceservice.aidl.IDeviceService.getUsbSerialPort ()

Parameters

None.

Return Values

An instance of IUsbSerialPort. Refer to IUsbSerialPort.aidl.

See Also

IUsbSerialPort

getSmartCardReader()

This method is used to access a smart card reader associated with a specific slot number
on a device.

 Programmers Guide Girgit

 282
 © Verifone Inc. All rights reserved.

Prototype

ISmartCardReader

com.vfi.smartpos.deviceservice.aidl.IDeviceService.getSmartCardReader (int

slotNo)

Parameters

slotNo An integer parameter specifying the slot number for the card
reader.

Return Values

An instance of ISmartCardReader. Refer to ISmartCardReader.aidl.

See Also

• getInsertCardReader()

• Refer to ISmartCardReader interface under Section 2.2.11.

getEMV()

This method is used to obtain an IEMV object, which facilitates interactions with EMV card
processing.

Prototype

IEMV com.vfi.smartpos.deviceservice.aidl.IDeviceService.getEMV ()

Parameters

None.

Return Values

An object of type IEMV, which provides the necessary functionalities for managing the EMV
card processing. Refer to IEMV.aidl.

 Programmers Guide Girgit

 283
 © Verifone Inc. All rights reserved.

getDUKPT()

This method is used to obtain a DUKPT object, which facilitates secure key management
for transactions.

Prototype

IDukpt com.vfi.smartpos.deviceservice.aidl.IDeviceService.getDUKPT ()

Parameters

None.

Return Values

An object of type IDUKPT, which provides functionalities for managing the DUKPT keys.
Refer to IDukpt.aidl.

getFelica()

This method is used to obtain a Felica object, which allows interaction with Felica card
technology.

Prototype

IFelica com.vfi.smartpos.deviceservice.aidl.IDeviceService.getFelica ()

Parameters

None.

Return Values

An instance of a Felica object which provides methods for interacting with Felica cards.
Refer to IFelica.aidl.

 Programmers Guide Girgit

 284
 © Verifone Inc. All rights reserved.

getUtils()

This method is used to retrieve an object that contains a set of utility methods for
performing common tasks or operations related to the device.

Prototype

IUtils com.vfi.smartpos.deviceservice.aidl.IDeviceService.getUtils ()

Parameters

None.

Return Values

An instance of a utilities object. Refer to IUtils.aidl.

getWirelessConnectionMgr()

This method is used to retrieve a WirelessConnectListener object, which allows to
manage and interact with wireless network connections on the device.

Prototype

WirelessConnectListener

com.vfi.smartpos.deviceservice.aidl.IDeviceService.getWirelessConnectionMgr ()

Parameters

None.

Return Values

An instance of WirelessConnectListener object. Refer to WirelessConnectListener.aidl.

 Programmers Guide Girgit

 285
 © Verifone Inc. All rights reserved.

getGirgitExt()

This method is used to retrieve an instance of the GirgitExt object, which provides
access to specific functionalities related to the Girgit system within the application.

Prototype

IGirgitExt com.vfi.smartpos.deviceservice.aidl.IDeviceService.getGirgitExt ()

Parameters

None.

Return Values

An instance of GirgitExt object.

getFFBase()

This method is used to retrieve an instance of the IFFBase object, which can then be used
to interact with the base unit, involved in network communication.

Prototype

IFFBase com.vfi.smartpos.deviceservice.aidl.IDeviceService.getFFBase ()

Parameters

None.

Return Values

An instance of IFFBase object. Refer to IFFBase.aidl.

 Programmers Guide Girgit

 286
 © Verifone Inc. All rights reserved.

2.2.18 ISystemService

Package: com.vfi.smartpos.deviceservice.aidl.ISystemService

Overview:

The ISystemService interface is part of the AIDL in the POS system. It mainly provides a method for
managing system-level operations.

Public Member Functions:

Modifier and Type Method

void reboot ()

Member Function Documentation:

reboot()

This method is called to initiate a system reboot. This action is necessary for applying
system updates, recovering from errors for improved performance.

NOTE
When an application calls the reboot() method, it internally
invokes a native reboot method that performs the actual
reboot operation at the system level.

Prototype

void org.verifone.girgit.systemservice.ISystemService.reboot ()

Parameters

None.

 Programmers Guide Girgit

 287
 © Verifone Inc. All rights reserved.

Return Values

void

2.2.19 IFFBase

Package: com.vfi.smartpos.deviceservice.aidl.IFFBase

Overview:

This interface provides methods to retrieve the base IP address and check the connection status with the
base unit.

Public Member Functions:

Modifier and Type Method

byte[] getBaseIpAddress ()

boolean isBaseConnected ()

Member Function Documentation:

getBaseIpAddress()

This method is used to retrieve the IP address of the base unit in the POS system.

Prototype

byte com.vfi.smartpos.deviceservice.aidl.IFFBase.getBaseIpAddress ()

Parameters

None.

Return Values

 Programmers Guide Girgit

 288
 © Verifone Inc. All rights reserved.

Returns a byte, which is used to represent the IP address as a sequence of bytes.

isBaseConnected()

This method checks whether there is an active connection to the base unit, which ensures
that the application can communicate with the base unit without issues.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IFFBase.isBaseConnected ()

Parameters

None.

Return Values

A Boolean value:

true: if the application is connected to the base unit (the connection is active).

false: if the connection to the base unit is not established or is no longer active.

 Programmers Guide Girgit

 289
 © Verifone Inc. All rights reserved.

2.3 Constant Definitions

2.3.1 BarcodeFormat

Package: com.vfi.smartpos.deviceservice.constdefine.BarcodeFormat

Overview:

The BarcodeFormat enum represents various types of barcode formats that can be processed by the
system. It extends java.lang.Enum<BarcodeFormat> and implements the interfaces java.io.Serializable
and java.lang.Comparable<BarcodeFormat>.

Enum Declaration:

public enum BarcodeFormat extends java.lang.Enum<BarcodeFormat>

Enum Constant Summary:

The following table lists all the constants in the BarcodeFormat enum, along with brief descriptions of
each and constant detail:

Enum Constant Description Enum Constant Detail

AZTEC Aztec 2D barcode format. public static final

BarcodeFormat AZTEC

CODABAR Codabar 1D barcode format. public static final

BarcodeFormat CODABAR

CODE_39 Code 39 1D barcode format. public static final

BarcodeFormat CODE_39

CODE_93 Code 93 1D barcode format. public static final

BarcodeFormat CODE_93

CODE_128 Code 128 1D barcode format. public static final

BarcodeFormat CODE_128

DATA_MATRIX Data Matrix 2D barcode format. public static final

BarcodeFormat DATA_MATRIX

file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html
file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html
file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html
file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html
file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html
file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html

 Programmers Guide Girgit

 290
 © Verifone Inc. All rights reserved.

EAN_8 EAN-8 1D barcode format. public static final

BarcodeFormat EAN_8

EAN_13 EAN-13 1D barcode format. public static final

BarcodeFormat EAN_13

ITF ITF (Interleaved Two of Five) 1D barcode

format.

public static final

BarcodeFormat ITF

MAXICODE MaxiCode 2D barcode format. public static final

BarcodeFormat MAXICODE

PDF_417 PDF417 2D barcode format. public static final

BarcodeFormat PDF_417

QR_CODE QR Code 2D barcode format. public static final

BarcodeFormat QR_CODE

RSS_14 RSS-14 (Reduced Space Symbology) 1D

barcode format.

public static final

BarcodeFormat RSS_14

RSS_EXPANDED RSS-Expanded 1D barcode format. public static final

BarcodeFormat RSS_EXPANDED

UPC_A UPC-A (Universal Product Code Version) 1D

barcode format.

public static final

BarcodeFormat UPC_A

UPC_E UPC-E 1D barcode format. public static final

BarcodeFormat UPC_E

UPC_EAN_EXTENSION UPC/EAN extension 1D barcode format (e.g.,

UPC+2, UPC+5).

public static final

BarcodeFormat UPC_EAN_EXTENSION

file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html
file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html
file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html
file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html
file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html
file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html
file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html
file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html
file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html
file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html
file:///C:/Users/ZeelanN/Downloads/doc_VF_service_3.13.0.1/doc_VF_service_3.13.0.1/com/vfi/smartpos/deviceservice/constdefine/BarcodeFormat.html

 Programmers Guide Girgit

 291
 © Verifone Inc. All rights reserved.

Method Summary:

The BarcodeFormat enum includes the following static methods:

Modifier and Type Method

static BarcodeFormat valueOf (java.lang.String name)

static BarcodeFormat[] values ()

Method Detail:

valueOf()

This method is used to returns the enum constant of this type with the specified name.
The name must exactly match one of the enum constant identifiers, and extraneous
whitespace characters are not permitted.

Prototype

public static BarcodeFormat valueOf(java.lang.String name)

Parameters

name A string that matches an enum constant name.

Return Values

The BarcodeFormat enum constant with the specified name.

Throws

java.lang.IllegalArgumentException: Thrown if there is no enum constant with the specified
name.

java.lang.NullPointerException: Thrown if the argument is null.

 Programmers Guide Girgit

 292
 © Verifone Inc. All rights reserved.

values()

This method is used to return an array containing all the constants of the enum type, in the
order they were declared. This allows you to easily iterate over all the enum constants.

Prototype

public static BarcodeFormat[] values()

Code Snippet

for (BarcodeFormat c: BarcodeFormat.values())

 System.out.println(c);

Parameters

None.

Return Values

An array of BarcodeFormat constants in the order they were declared.

 Programmers Guide Girgit

 293
 © Verifone Inc. All rights reserved.

2.3.2 ConstCheckCardListener

Package: com.vfi.smartpos.deviceservice.constdefine.ConstCheckCardListener

Overview:

The ConstCheckCardListener class provides a structure for extracting and managing various pieces of
data from a card when it is swiped through a card reader. This can include both magnetic stripe data and
chip data.

Class Declaration:

public class ConstCheckCardListener extends java.lang.Object

Main Class Summary:

This is the main class responsible for handling card swipe events.

Modifier and Type Class and Description

class ConstCheckCardListener

Constructor Summary:

The constructor is public and initializes an instance of the ConstCheckCardListener class. It sets up
internal event handling or prepares the class for listening to card swipe events.

Constructor Constructor Detail

ConstCheckCardListener() public ConstCheckCardListener()

Nested Class Summary:

This nested class is intended to handle the actual swipe event. When a card is swiped through a POS
terminal, this class processes the data captured from the card.

Modifier and Type Class and Description

class onCardSwiped

file:///C:/Users/ZeelanN/Downloads/doc/html/classcom_1_1vfi_1_1smartpos_1_1deviceservice_1_1constdefine_1_1_const_check_card_listener.html

 Programmers Guide Girgit

 294
 © Verifone Inc. All rights reserved.

Constructor Summary:

The constructor initializes an instance of the onCardSwiped class, preparing it to capture and process the
data from the swipe event.

Constructor Constructor Detail

onCardSwiped() public onCardSwiped()

Nested Class Summary:

This nested class handles data from the individual tracks of the magnetic stripe on the card (Track 1,
Track 2, Track 3). Each track contains different pieces of information, such as account data, cardholder
information, and more.

Modifier and Type Class and Description

class track

Constructor Summary:

This constructor initializes the track class, which captures and processes the data for each individual
track of the magnetic stripe. These tracks contain different formats and types of data:

Constructor Constructor Detail

track() public track()

Static Public Attributes:

The class defines several static final fields that are used to represent specific pieces of information that
can be extracted from the card data:

Modifier and Type Field Name Description Field Detail

static final String KEY_PAN_String Represents the Primary

Account Number (PAN).

public static

final java.lang.String

KEY_PAN_String

 Programmers Guide Girgit

 295
 © Verifone Inc. All rights reserved.

static final String KEY_TRACK1_String Contains data from Track 1

of the magnetic stripe.

public static

final java.lang.String

KEY_TRACK1_String

static final String KEY_TRACK2_String Contains data from Track 2

of the magnetic stripe.

public static final

java.lang.String

KEY_TRACK2_String

static final String KEY_TRACK3_String Contains data from Track 3

of the magnetic stripe.

public static

final java.lang.String

KEY_TRACK3_String

static final String KEY_SERVICE_CODE_String Represents the service code

for the card.

public static

final java.lang.String

KEY_SERVICE_CODE_String

static final String KEY_EXPIRED_DATE_String Indicates the expiration date

of the card.

public static

final java.lang.String

KEY_EXPIRED_DATE_String

2.3.3 ConstILed

Package: com.vfi.smartpos.deviceservice.constdefine.ConstILed

Overview:

The ConstILed class is part of a system created to manage LED indicators on a smart POS device. It
defines constants or fields for various LED states, making it easier for developers to control or manage
the behavior of LEDs programmatically.

Class Declaration:

public class ConstILed extends java.lang.Object

 Programmers Guide Girgit

 296
 © Verifone Inc. All rights reserved.

Main Class Summary:

The ConstILed class is part of a system designed to manage LED indicators on a smart POS device.

Modifier and Type Class and Description

class ConstILed

Constructor Summary:

The constructor ConstILed() is a default constructor used to initialize the ConstILed class.

Constructor Constructor Detail

ConstILed() public ConstILed()

Static Public Attributes:

The following table lists Modifier and Type, Field Name, Value, Description, and Field Detail:

Modifier and Type Field Name Value Description Field Detail

static final int BLUE 1 Represents the blue LED. public static final int BLUE

static final int YELLOW 2 Represents the yellow LED. public static final int

YELLOW

static final int GREEN 3 Represents the green LED. public static final int

GREEN

static final int RED 4 Represents the red LED. public static final int RED

2.3.4 ConstIPBOC

Package: com.vfi.smartpos.deviceservice.constdefine.ConstIPBOC

Overview:

 Programmers Guide Girgit

 297
 © Verifone Inc. All rights reserved.

The ConstIPBOC is part of a smart POS system's device service framework. It is created to handle
integrated payment operations on smart cards. The ConstIPBOC class serves as a container for constants
and operations related to IPBOC, which encompasses a variety of activities, including card detection,
data import, EMV transaction processing, and other payment-related operations.

The class is used in scenarios where a smart POS terminal is involved in processing card transactions,
particularly those that require secure communications, such as EMV transactions.

Class Declaration:

public class ConstIPBOC extends java.lang.Object

Main Class Summary:

The ConstIPBOC class provides constants and has a series of inner classes or methods that interact with
card readers, manage transaction flows, and handle necessary card data processing.

Modifier and Type Class and Description

class ConstIPBOC

Constructor Summary:

This is a default constructor would initialize the object and prepare it to interact with other classes or
methods of the payment processing system.

Constructor Constructor Detail

ConstIPBOC() public ConstIPBOC()

Nested Class Summary:

The ConstIPBOC class consists of several nested classes, each handling a distinct part of the EMV card
transaction process.

Modifier and Type Class and Description

class checkCard

 Programmers Guide Girgit

 298
 © Verifone Inc. All rights reserved.

class importCardConfirmResult

class importCertConfirmResult

class inputOnlineResult

class startEMV

class updateAID

class updateRID

Nested Class Summary:

The checkCard class is used to perform operations related to checking the card’s state, type, or integrity.

Modifier and Type Class and Description

class checkCard

Constructor Summary:

The default constructor for checkCard() initializes an instance of this class.

Constructor Constructor Detail

checkCard() public checkCard()

Nested Class Summary:

The cardOption class is a nested class within checkCard and is created to encapsulate options related to
a card, such as its type and its status.

Modifier and Type Class and Description

class cardOption

Constructor Summary:

 Programmers Guide Girgit

 299
 © Verifone Inc. All rights reserved.

The default constructor for cardOption() initializes an instance of this class.

Constructor Constructor Detail

cardOption() public cardOption()

 Programmers Guide Girgit

 300
 © Verifone Inc. All rights reserved.

Static Public Attributes:

The following table lists Modifier and Type, Field Name, Description, and Field Detail:

Modifier and Type Field Name Description Field Detail

static final String KEY_MagneticCard_boolean The string value

"supportMagCard" is used

as a reference to indicate

whether magnetic stripe

cards are supported or not.

public static final

java.lang.String

KEY_MagneticCard_boolean

static final String KEY_SmartCard_boolean The string value

"supportICCard"

indicates whether smart

card functionality is

supported by the system.

public static final

java.lang.String

KEY_SmartCard_boolean

static final String KEY_Contactless_boolean The string value

"supportRFCard"

indicates whether RFID-

based contactless cards

(e.g., NFC cards) are

supported.

public static final

java.lang.String

KEY_Contactless_boolean

static final boolean VALUE_supported A boolean value of true,

which indicates that a

feature support is available

in the system.

public static final

boolean VALUE_supported

static final boolean VALUE_unsupported A boolean value of false,

which indicates that a

feature support is not

available in the system.

public static final

boolean

VALUE_unsupported

 Programmers Guide Girgit

 301
 © Verifone Inc. All rights reserved.

Nested Class Summary:

The importCardConfirmResult class is created to manage operations related to the confirmation of card
imports.

Modifier and Type Class and Description

class importCardConfirmResult

Constructor Summary:

The default constructor for the importCardConfirmResult class, which initializes an instance of this class.

Constructor Constructor Detail

importCardConfirmResult() public importCardConfirmResult()

Nested Class Summary:

The pass nested class within importCardConfirmResult appears to be used for indicating successful
card import operations.

Modifier and Type Class and Description

class pass

Constructor Summary:

The default constructor for the pass nested class. This constructor initializes an instance of the pass
class, which could serve as an indicator that the card import was successfully completed.

Constructor Constructor Detail

pass() public pass()

Static Public Attributes:

The following table lists Modifier and Type, Field Name, Description, and Field Detail:

 Programmers Guide Girgit

 302
 © Verifone Inc. All rights reserved.

Modifier and Type Field Name Description Field Detail

static final boolean allowed If the value is true, it indicates that the

operation has been allowed.

public static final

boolean allowed

static final boolean refused If the value is false, it indicates that the

operation has been refused.

public static final

boolean refused

Nested Class Summary:

This class handles the confirmation of card imports, or the result of a card import process in a system.

Modifier and Type Class and Description

class importCertConfirmResult

Constructor Summary:

This is the default constructor for the class. It initializes an instance of the importCertConfirmResult
class, which holds or manages the result of confirming a card import.

Constructor Constructor Detail

importCertConfirmResult() public importCertConfirmResult()

Nested Class Summary:

The nested option class define a set of constant values that represent various possible outcomes for a
card import confirmation operation.

Modifier and Type Class and Description

class option

Constructor Summary:

This is the default constructor for the nested option class, which might be used to initialize instances of
the option class.

 Programmers Guide Girgit

 303
 © Verifone Inc. All rights reserved.

Constructor Constructor Detail

option() public option()

Static Public Attributes:

The following table lists Modifier and Type, Field Name, Value, Description, and Field Detail:

Modifier and
Type

Field Name Value Description Field Detail

static final int CANCEL 0 Indicates that the card import was cancelled.
public static

final int

CANCEL

static final int CONFIRM 1 Indicates that the card import was successfully

confirmed.

public static

final int

CONFIRM

static final int NOTMATCH 2 Indicates that the card import did not match the

expected criteria (e.g., invalid card or data

mismatch).

public static

final int

NOTMATCH

Nested Class Summary:

This class handles the results of an online transaction input or a response from an online transaction.

Modifier and Type Class and Description

class inputOnlineResult

Constructor Summary:

This is the default constructor for the inputOnlineResult class. It initializes an instance of this class.

Constructor Constructor Detail

inputOnlineResult() public inputOnlineResult()

Nested Class Summary:

 Programmers Guide Girgit

 304
 © Verifone Inc. All rights reserved.

The nested onlineResult class defines constants used to handle specific data or response fields in the
context of an online transaction.

Modifier and Type Class and Description

class onlineResult

Constructor Summary:

This is the default constructor for the nested onlineResult class, which may initialize certain internal
states if required.

Constructor Constructor Detail

onlineResult() public onlineResult()

Static Public Attributes:

The following table lists Modifier and Type, Field Name, Description, and Field Detail:

Modifier and Type Field Name Description Field Detail

static final String KEY_isOnline_boolean Represents whether the

transaction is processed

online.

public static

finaljava.lang.String

KEY_isOnline_boolean

static final String KEY_respCode_String Represents the

response code returned

after processing the

transaction.

public static final

java.lang.String

KEY_respCode_String

static final String KEY_authCode_String Represents the

authorization code

returned for a successful

transaction.

public static final

java.lang.String

KEY_authCode_String

 Programmers Guide Girgit

 305
 © Verifone Inc. All rights reserved.

static final String KEY_field55_String Represents additional

transaction data, such

as PIN or other sensitive

information (often used

in EMV transactions).

public static final

java.lang.String

KEY_field55_String

Nested Class Summary:

This class handles the results of an online transaction input or a response from an online transaction.

Modifier and Type Class and Description

class startEMV

Constructor Summary:

This is the default constructor for the inputOnlineResult class. It initializes an instance of this class.

Constructor Constructor Detail

startEMV() public startEMV()

Nested Class Summary:

The startEMV class and its nested classes are likely part of a system that handles EMV card transactions.

Modifier and Type Class and Description

class intent

class processType

Nested Class Summary:

The intent class is a data container or configuration class used to store various settings or values for a
transaction or payment processing flow.

Modifier and Type Class and Description

 Programmers Guide Girgit

 306
 © Verifone Inc. All rights reserved.

class intent

Constructor Summary:

A constructor for the intent class, which might initialize default values or configurations for transaction
parameters (e.g., card type, process code, support for specific technologies like QPBOC, etc.).

Constructor Constructor Detail

intent() public intent()

Static Public Attributes:

The following table lists Modifier and Type, Field Name, Description, and Field Detail:

Modifier and Type Field Name Description Field Detail

static final String KEY_isPanConfirmOnSimp

eProcess_boolean

Key for confirming whether the

PAN (Primary Account Number)

should be verified during a

simplified payment process. This

could be useful for fraud

prevention or as part of a

security protocol.

public static final

java.lang.String

KEY_isPanConfirmOnSim

peProcess_boolean

static final String KEY_cardType_int Key used to specify the type of

card being processed (e.g., smart

card, contactless card).

public static final

java.lang.String

KEY_cardType_int

static final int VALUE_cardType_smart_c

ard

Value representing a smart card

type (0). A smart card could refer

to a chip card with embedded

microprocessors.

public static final

int

VALUE_cardType_smart_

card

 Programmers Guide Girgit

 307
 © Verifone Inc. All rights reserved.

static final int VALUE_cardType_contactl

ess

Value representing a contactless

card type (1). This could be used

to distinguish contactless

payment methods (like NFC or

RFID-based cards).

public static final

int

VALUE_cardType_contac

tless

static final String KEY_transProcessCode_b

yte

Key for storing the transaction

process code. This likely

corresponds to the type of

transaction (e.g., purchase,

refund, authorization).

public static final

java.lang.String

KEY_transProcessCode_

byte

static final String KEY_authAmount_long Key for specifying the

authorization amount. This value

is used during payment

processing to define the amount

to be authorized for the

transaction.

public static final

java.lang.String

KEY_authAmount_long

static final String KEY_isSupportQ_boolean Key to indicate whether the

system supports QPBOC (Quick

Pass Based on Online

Communication).

public static final

java.lang.String

KEY_isSupportQ_boolea

n

static final boolean VALUE_supported Value true to indicate that

QPBOC is supported

public static final

boolean

VALUE_supported

static final boolean VALUE_unsupported Value false to indicate that

QPBOC is not supported.

public static final

boolean

VALUE_unsupported

static final String KEY_isSupportSM_boolea

n

Key to indicate whether Secure

Messaging (SM) is supported.

public static final

java.lang.String

KEY_isSupportSM_boole

an

 Programmers Guide Girgit

 308
 © Verifone Inc. All rights reserved.

SM could be important for

ensuring secure communication

between devices.

static final String KEY_isQPBOCForceOnline

_boolean

Key to determine whether

QPBOC should always be

processed online (forced to go

online).

public static final

java.lang.String

KEY_isQPBOCForceOnlin

e_boolean

static final boolean VALUE_forced Value true to indicate that

QPBOC should always go online

for processing.

public static final

boolean VALUE_forced

static final boolean VALUE_unforced Value false to indicate that

QPBOC does not need to be

forced to go online and can be

processed offline.

public static final

boolean

VALUE_unforced

static final String KEY_merchantName_Strin

g

Key for the merchant's name.

This is used to identify the

merchant in the system or on

receipts.

public static final

java.lang.String

KEY_merchantName_Stri

ng

static final String KEY_merchantId_String Key for the merchant’s unique ID.

This could be used to track

transactions or identify the

merchant for processing.

public static final

java.lang.String

KEY_merchantId_String

static final String KEY_terminalId_String Key for the terminal ID. Each POS

terminal typically has a unique

identifier used for transaction

processing or reporting.

public static final

java.lang.String

KEY_terminalId_String

 Programmers Guide Girgit

 309
 © Verifone Inc. All rights reserved.

Nested Class Summary:

This class is used to group related constants together, specifically constants that define the types of
transaction processes available in the system.

Modifier and Type Class and Description

class processType

Constructor Summary:

The constructor processType() is public, this is a default constructor provided for convenience.

Constructor Constructor Detail

processType() public processType()

Static Public Attributes:

The following table lists Modifier and Type, Field Name, Description, and Field Detail:

Modifier and Type Field Name Description Field Detail

static final int full_process Represents a constant value of 1,

which indicates a full transaction

process.

public static final int

full_process

static final int simple_process Represents a constant value of 2,

which indicates a simplified or fast

transaction process.

public static final int

simple_process

Nested Class Summary:

The updateAID class is responsible for handling updates related to an Application Identifier (AID) during
an online transaction process.

Modifier and Type Class and Description

 Programmers Guide Girgit

 310
 © Verifone Inc. All rights reserved.

class updateAID

Constructor Summary:

This is the default constructor of the updateAID class. It initializes an instance of this class, which is
involved in updating the AID based on the current transaction data.

Constructor Constructor Detail

updateAID() public updateAID()

Nested Class Summary:

The updateAID class and its nested classes are part of a system that handles EMV card transactions.

Modifier and Type Class and Description

class aidType

class operation

Nested Class Summary:

The aidType class represent the type of the Application Identifier (AID) an online transaction, especially in
EMV systems.

Modifier and Type Class and Description

class aidType

Constructor Summary:

This constructor initializes default values or properties related to the AID, such as the application
identifier and associated information.

Constructor Constructor Detail

aidType() public aidType()

Static Public Attributes:

 Programmers Guide Girgit

 311
 © Verifone Inc. All rights reserved.

The following table lists Modifier and Type, Field Name, Description, and Field Detail:

Modifier and Type Field Name Description Field Detail

static final int smart_card Represents a constant value of 1, which

indicates a smart card (or chip card) in the

system.

public static final

int smart_card

static final int contactless Represents a constant value of 2, which

indicates a contactless card (NFC/RFID-

enabled card).

public static final

int contactless

Nested Class Summary:

The operation class could represent an operation or transaction type that is performed as part of an
EMV card transaction.

Modifier and Type Class and Description

class operation

Constructor Summary:

The constructor public operation() initializes an object of the operation class.

Constructor Constructor Detail

operation() public operation()

Static Public Attributes:

The following table lists Modifier and Type, Field Name, Description, and Field Detail:

Modifier and Type Field Name Description Field Detail

 Programmers Guide Girgit

 312
 © Verifone Inc. All rights reserved.

static final int append A value 1 represents the operation to append

an item to a collection, list, or array.

public static final

int append

static final int remove A value 2 represents the operation to remove

an item from a collection or data structure.

public static final

int remove

static final int clear A value 3 represents the operation to clear or

empty the entire collection.

public static final

int clear

Nested Class Summary:

The updateRID class seems to represent an operation or functionality related to updating or managing
Routing ID (RID) data.

Modifier and Type Class and Description

class updateRID

Constructor Summary:

The constructor updateRID() is public, meaning instances of this class can be created from outside the
class.

Constructor Constructor Detail

updateRID() public updateRID()

Nested Class Summary:

The operation class is a simple utility class that defines constants for various types of operations, which
can be applied to a collection or set of data, such as adding, removing, or clearing data.

Modifier and Type Class and Description

class operation

Constructor Summary:

 Programmers Guide Girgit

 313
 © Verifone Inc. All rights reserved.

The operation() constructor is public, it allows you to instantiate an operation object if necessary.

Constructor Constructor Detail

operation() public operation()

Static Public Attributes:

The following table lists Modifier and Type, Field Name, Description, and Field Detail:

Modifier and Type Field Name Description Field Detail

static final int append A value 1 represents the operation to append

an item to a collection, list, or array.

public static final

int append

static final int remove A value 2 represents the operation to remove

an item from a collection or data structure.

public static final

int remove

static final int clear A value 3 represents the operation to clear or

empty the entire collection.

public static final

int clear

2.3.5 ConstIPinpad

Package: com.vfi.smartpos.deviceservice.constdefine.ConstIPinpad

Overview:

The ConstIPinpad class is part of an SDK or API that provides constants and settings specifically related
to the Pinpad device integration within a POS system. A Pinpad device is used in payment systems to
securely capture and process sensitive information such as PIN entries, card details, and cryptographic
operations during financial transactions.

Class Declaration:

public class ConstIPinpad extends java.lang.Object

 Programmers Guide Girgit

 314
 © Verifone Inc. All rights reserved.

Main Class Summary:

This class is mainly focused on providing constant values that govern the Pinpad device's behavior in a
POS environment.

Modifier and Type Class and Description

class ConstIPinpad

Constructor Summary:

The constructor is simple and initializes the ConstIPinpad class.

Constructor Constructor Detail

ConstIPinpad() public ConstIPinpad()

Nested Class Summary:

The ConstIPinpad class also defines some nested classes, which are used for specific tasks related to
the Pinpad device.

Modifier and Type Class and Description

class calculateByMSKey

class startPinInput

Nested Class Summary:

This nested class handles operations related to calculating or using the Master Session Key (MSK), which
is used for cryptographic operations.

Modifier and Type Class and Description

class calculateByMSKey

Constructor Summary:

 Programmers Guide Girgit

 315
 © Verifone Inc. All rights reserved.

This is a default constructor for this nested class. This constructor would initialize the class for
cryptographic operations that involve the Master Session Key (MSK).

Constructor Constructor Detail

calculateByMSKey() public calculateByMSKey()

Nested Class Summary:

The calculateByMSKey class also defines some nested classes, which are used for specific tasks related
to the Pinpad device.

Modifier and Type Class and Description

class algorithmMode

class keyType

Nested Class Summary:

The algorithmMode class defines the supported cryptographic algorithms that can be used in conjunction
with the MSK.

Modifier and Type Class and Description

class algorithmMode

Constructor Summary:

The algorithmMode() constructor initializes the class but may not necessarily perform any action
because the class primarily consists of constants related to cryptographic algorithms.

Constructor Constructor Detail

algorithmMode() public algorithmMode()

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the
algorithmMode class:

 Programmers Guide Girgit

 316
 © Verifone Inc. All rights reserved.

Modifier and Type Field Name Value Description Field Detail

static final int Encrypt_ECB 0x00 Encrypt data using Electronic

Codebook (ECB) mode.

public static

final int

Encrypt_ECB

static final int Decrypt_ECB 0x01 Decrypt data using ECB mode.
public static

final int

Decrypt_ECB

static final int Encrypt_CBC 0x02 Encrypt data using Cipher Block

Chaining (CBC) mode.

public static

final int

Encrypt_CBC

static final int Decrypt_CBC 0x03 Decrypt data using CBC mode.
public static

final int

Decrypt_CBC

Nested Class Summary:

The keyType class is a nested class within the calculateByMSKey class of the ConstIPinpad class. This
class defines key types used for encryption, decryption, and other cryptographic operations within a POS
system.

Modifier and Type Class and Description

class keyType

Constructor Summary:

The keyType class has a default constructor. It does not take any parameters and does not perform any
specific initialization beyond the default behavior, as it mainly serves to define the constants for key
types.

Constructor Constructor Detail

keyType() public keyType()

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the keyType class:

 Programmers Guide Girgit

 317
 © Verifone Inc. All rights reserved.

Modifier and Type Field Name Value Description Field Detail

static final int Master_Key 0x00 Represents a Master Key used for

general encryption purposes.

public static

final int

Master_Key

static final int SM4_Master_Key 0x01 Represents an SM4 Master Key,

used for the SM4 encryption

algorithm.

public static

final int

SM4_Master_Key

static final int AES_Master_Key 0x02 Represents an AES Master Key,

used for the AES encryption

algorithm.

public static

final int

AES_Master_Key

Nested Class Summary:

The startPinInput class is a nested class within the ConstIPinpad class. It is responsible for handling the
PIN input process on a Pinpad device.

Modifier and Type Class and Description

class startPinInput

Constructor Summary:

This is the default constructor for the startPinInput class. It is used to instantiate the class and could
potentially perform any necessary initialization tasks.

Constructor Constructor Detail

startPinInput() public startPinInput()

Nested Class Summary:

The startPinInput class also defines some nested classes, which are used for specific tasks related to
the Pinpad device.

 Programmers Guide Girgit

 318
 © Verifone Inc. All rights reserved.

Modifier and Type Class and Description

class globleParam

class param

Nested Class Summary:

The globleParam class is a nested class within the startPinInput class. This nested class defines global
parameters that are used for configuring or managing the PIN input process on a Pinpad device in a POS
system.

Modifier and Type Class and Description

class globleParam

Constructor Summary:

This constructor is part of the globleParam nested class and is responsible for initializing any default
settings or parameters related to the PIN input process.

Constructor Constructor Detail

globleParam() public globleParam()

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the globleParam
class:

Modifier

and Type

Field Name Value Description Field Detail

static final

String
KEY_Display_One_String "Display_One" Represents the "1"

key.

public static final

java.lang.String

KEY_Display_One_Stri

ng

 Programmers Guide Girgit

 319
 © Verifone Inc. All rights reserved.

static final

String
KEY_Display_Two_String "Display_Two" Represents the "2"

key.

public static final

java.lang.String

KEY_Display_Two_Str

ing

static final

String
KEY_Display_Three_Strin

g

"Display_Three" Represents the "3"

key.

public static final

java.lang.String

KEY_Display_Three_St

ring

static final

String
KEY_Display_Four_String "Display_Four" Represents the "4"

key.

public static final

java.lang.String

KEY_Display_Four_Str

ing

static final

String
KEY_Display_Five_String "Display_Five" Represents the "5"

key.

public static final

java.lang.String

KEY_Display_Five_Str

ing

static final

String
KEY_Display_Six_String "Display_Six" Represents the "6"

key.

public static final

java.lang.String

KEY_Display_Six_Stri

ng

static final

String
KEY_Display_Seven_Strin

g

"Display_Seven" Represents the "7"

key.

public static final

java.lang.String

KEY_Display_Seven_St

ring

static final

String
KEY_Display_Eight_Strin

g

"Display_Eight" Represents the "8"

key.

public static final

java.lang.String

KEY_Display_Eight_St

ring

static final

String
KEY_Display_Nine_String "Display_Nine" Represents the "9"

key.

public static final

java.lang.String

KEY_Display_Nine_Str

ing

static final

String
KEY_Display_Zero_String "Display_Zero" Represents the "0"

key.

public static final

java.lang.String

KEY_Display_Zero_Str

ing

 Programmers Guide Girgit

 320
 © Verifone Inc. All rights reserved.

static final

String
KEY_Display_Confirm_Str

ing

"Display_Confirm" Represents the

Confirm button.

public static final

java.lang.String

KEY_Display_Confirm_

String

static final

String
KEY_Display_BackSpace

_String

"Display_BackSpa

ce"

Represents the

Backspace button.

public static final

java.lang.String

KEY_Display_BackSpac

e_String

Nested Class Summary:

The param class within the startPinInput class of the ConstIPinpad class represents the parameters
that are specific to the PIN input process.

Modifier and Type Class and Description

class param

Constructor Summary:

The param class might have a default constructor or constructors that initialize the session parameters
with specific values.

Constructor Constructor Detail

param() public param()

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the param class:

Modifier and

Type

Field Name Value Description Field Detail

 static final

String

KEY_isOnline_boolean "isOnline" Indicates whether the

device is in online or

offline mode.

final String

com.vfi.smartpos.

deviceservice.con

stdefine.ConstIPi

file:///C:/Users/ZeelanN/Downloads/doc/html/classcom_1_1vfi_1_1smartpos_1_1deviceservice_1_1constdefine_1_1_const_i_pinpad_1_1start_pin_input_1_1param.html%23ab1f8e308157db80449afd478f1d2e1e1

 Programmers Guide Girgit

 321
 © Verifone Inc. All rights reserved.

npad.startPinInpu

t.param.KEY_isOnl

ine_boolean

="isOnline"

static final

String

KEY_pan_String "pan" Represents the PAN for

the card.

final String

com.vfi.smartpos.

deviceservice.con

stdefine.ConstIPi

npad.startPinInpu

t.param.KEY_pan_S

tring ="pan"

static final

String

KEY_pinLimit_ByteArray "pinLimit" Defines the PIN length

or limit.

final String

com.vfi.smartpos.

deviceservice.con

stdefine.ConstIPi

npad.startPinInpu

t.param.KEY_pinLi

mit_ByteArray

="pinLimit"

static final

String

KEY_timeout_int "timeout" Defines the timeout

period for the PIN entry

process.

public static

final

java.lang.String

KEY_timeout_int

static final

String

KEY_desType_int "desType" Defines the encryption

algorithm type to be

used.

final String

com.vfi.smartpos.

deviceservice.con

stdefine.ConstIPi

npad.startPinInpu

file:///C:/Users/ZeelanN/Downloads/doc/html/classcom_1_1vfi_1_1smartpos_1_1deviceservice_1_1constdefine_1_1_const_i_pinpad_1_1start_pin_input_1_1param.html%23af549d9f3d1f9b7bbb28026204e800014
file:///C:/Users/ZeelanN/Downloads/doc/html/classcom_1_1vfi_1_1smartpos_1_1deviceservice_1_1constdefine_1_1_const_i_pinpad_1_1start_pin_input_1_1param.html%23ae03486ec9185da1d282d7605baa230d7
file:///C:/Users/ZeelanN/Downloads/doc/html/classcom_1_1vfi_1_1smartpos_1_1deviceservice_1_1constdefine_1_1_const_i_pinpad_1_1start_pin_input_1_1param.html%23ad5ac58105ae32c28177f56d6581ab2ee

 Programmers Guide Girgit

 322
 © Verifone Inc. All rights reserved.

t.param.KEY_desTy

pe_int ="desType"

static final int Value_desType_3DES 1 3DES encryptions

mode. Default option.

final int

com.vfi.smartpos.

deviceservice.con

stdefine.ConstIPi

npad.startPinInpu

t.param.Value_des

Type_3DES = 1

static final int Value_desType_AES 2 AES (Advanced

Encryption Standard)

encryption mode.

public static

final int

Value_desType_AES

static final int Value_desType_SM4 3 SM4 encryption

(Chinese Standard)

mode.

public static

final int

Value_desType_SM4

static final int Value_desType_DUKPT_3DE

S

4 DUKPT with 3DES

encryption.

public static

final int

Value_desType_DUK

PT_3DES

static final

String

KEY_promptString_String "promptStrin

g"

The prompt string

displayed to the user

during PIN input.

public static

final

java.lang.String

KEY_promptString_

String

static final

String

KEY_randomize_PED "randomize_

PED"

Defines whether the

PIN Entry Device (PED)

public static

final

file:///C:/Users/ZeelanN/Downloads/doc/html/classcom_1_1vfi_1_1smartpos_1_1deviceservice_1_1constdefine_1_1_const_i_pinpad_1_1start_pin_input_1_1param.html%23a0c65395955c5e420815e303819ba8d98

 Programmers Guide Girgit

 323
 © Verifone Inc. All rights reserved.

layout should be

randomized for

security.

java.lang.String

KEY_

randomize_PED

2.3.6 ConstIPrinter

Package: com.vfi.smartpos.deviceservice.constdefine.ConstIPrinter

Overview:

The ConstIPrinter class contains constants specifically for controlling or configuring the printer within
that POS system. These constants could define various printer states, commands, or configuration
parameters.

Class Declaration:

public class ConstIPrinter extends java.lang.Object

Main Class Summary:

The ConstIPrinter class is a utility class within the POS system's software package, created specifically
to define constants for controlling and configuring the behavior of a printer in a POS system.

Modifier and Type Class and Description

class ConstIPrinter

Constructor Summary:

The ConstIPrinter() is simple and initializes the ConstIPrinter class, ensuring that the constants
defined within the class are accessible.

Constructor Constructor Detail

ConstIPrinter() public ConstIPrinter()

 Programmers Guide Girgit

 324
 © Verifone Inc. All rights reserved.

Nested Class Summary:

The ConstIPrinter includes nested classes, each likely representing a different aspect or functionality of
the printer:

Modifier and Type Class and Description

class addBarCode

class addQrCode

class addText

class addTextInLine

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the
ConstIPrinter class:

Modifier and

Type

Field Name Value Description Field Detail

static final

String

BUNDLE_PRINT_FONT "font" Defines the font

setting. Default is

small font.

final String

com.vfi.smartpos.

deviceservice.con

stdefine.ConstIPr

inter.BUNDLE_PRIN

T_ALIGN = "align"

static final

String

BUNDLE_PRINT_ALIGN "align" Defines the alignment

setting. Default is left-

aligned.

final String

com.vfi.smartpos.

deviceservice.con

stdefine.ConstIPr

file:///C:/Users/ZeelanN/Downloads/doc/html/classcom_1_1vfi_1_1smartpos_1_1deviceservice_1_1constdefine_1_1_const_i_printer.html%23a5203fb23a289db5561c237dcfd035dbe

 Programmers Guide Girgit

 325
 © Verifone Inc. All rights reserved.

inter.BUNDLE_PRIN

T_FONT = "font"

Nested Class Summary:

The addBarCode class is a nested class inside the ConstIPrinter class, and its purpose is likely to handle
tasks related to printing barcodes on the POS printer.

Modifier and Type Class and Description

class addBarCode

Constructor Summary:

The addBarCode() constructor initializes the class, but it might not be frequently used for instantiation,
especially if the class is focused on handling static methods or constants for barcode printing.

Constructor Constructor Detail

addBarCode() public addBarCode()

Nested Class Summary:

The format class is a nested class inside the ConstIPrinter class. Its primary role appears to be defining
constants related to various formatting options for printing in the POS system.

Modifier and Type Class and Description

class format

Constructor Summary:

The constructor format() is public, indicating that it can be instantiated, though, like other utility or
constant classes.

Constructor Constructor Detail

format() public format()

 Programmers Guide Girgit

 326
 © Verifone Inc. All rights reserved.

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the format class:

Modifier and

Type

Field Name Value Description Field Detail

static final String KEY_Alignment_int "align" This is the key for the

alignment setting, likely

used to refer to

alignment in

configuration or

command contexts.

public static

final java.lang.Strin

g KEY_Alignment_int

static final int VALUE_Alignment_LEF

T

0 An integer value

representing alignment

option (left) that can be

used when printing text.

public static final

int

VALUE_Alignment_LEFT

static final int VALUE_Alignment_CE

NTER

1 An integer value

representing alignment

option (center) that can

be used when printing

text.

public static final

int

VALUE_Alignment_CENTE

R

static final int VALUE_Alignment_RIG

HT

2 An integer value

representing alignment

option (right) that can

be used when printing

text.

public static final

int

VALUE_Alignment_RIGHT

 Programmers Guide Girgit

 327
 © Verifone Inc. All rights reserved.

static final String KEY_PixelWidthMode_i

nt

"pixelPo

int"

This is a key used for

identifying pixel width

configurations.

public static

final java.lang.Strin

g

KEY_PixelWidthMode_in

t

static final int VALUE_PixelWidthMod

e_AUTO

1 It sets the printer to

automatically determine

the pixel width, possibly

adjusting the content's

width to fit within the

printable area.

public static

final int

VALUE_PixelWidthMode_

AUTO

static final String KEY_Height_int "height" This is the key used to

reference height

settings in the context

of printing.

public static final

java.lang.String

KEY_Height_int

Nested Class Summary:

The addQrCode class is another nested class within ConstIPrinter, created specifically for handling QR
code printing in the POS system.

Modifier and Type Class and Description

class addQrCode

Constructor Summary:

The constructor addQrCode() is public, and it likely initializes the addQrCode class for use.

Constructor Constructor Detail

addQrCode() public addQrCode()

 Programmers Guide Girgit

 328
 © Verifone Inc. All rights reserved.

Nested Class Summary:

The format class is a nested class within the ConstIPrinter class. This class is created to provide a set
of constants for formatting settings that can be used when working with printed content in a POS
system.

Modifier and Type Class and Description

class format

Constructor Summary:

The constructor format() is public, meaning that the class can be instantiated. However, the format class
is mainly created to hold static constants.

Constructor Constructor Detail

format() public format()

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the format class:

Modifier and

Type

Field Name Value Description Field Detail

static final String KEY_Offset_int "offset" This constant is used to

represent the key for

configuring the offset of

printed content.

public static final

java.lang.String

KEY_Offset_int

static final String KEY_Height_String "expect

edHeigh

t"

This constant is used to

represent the key for

configuring the height of

printed content, such as

public static final

java.lang.String

KEY_Height_String

 Programmers Guide Girgit

 329
 © Verifone Inc. All rights reserved.

the height of a QR code

or text.

Nested Class Summary:

The addText class is a nested class within ConstIPrinter that is created specifically to handle the
printing of text in a POS system.

Modifier and Type Class and Description

class addText

Constructor Summary:

The constructor addText() is public, meaning that an instance of the addText class can be created and
accessed by other parts of the program. It initializes the addText class, preparing it to handle text printing
tasks.

Constructor Constructor Detail

addText() public addText()

Nested Class Summary:

The format class is a nested class within the ConstIPrinter class, which is a part of the POS system
package.

Modifier and Type Class and Description

class format

Constructor Summary:

The constructor format() is public, meaning that instances of the format class can be created. However,
as a utility class holding constants.

 Programmers Guide Girgit

 330
 © Verifone Inc. All rights reserved.

Constructor Constructor Detail

format() public format()

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the format class:

Modifier and

Type

Field Name Value Description Field Detail

static final

String

KEY_FontSize_int "font" Key for specifying the

font size.

public static

final java.lang.Stri

ng KEY_FontSize_int

static final int VALUE_FontSize_SMALL_16_1

6

0 Small font size (16x16).
public static

final int

VALUE_FontSize_SMALL

_16_16

static final int VALUE_FontSize_NORMAL_24

_24

1 Normal font size

(24x24).

public static

final int

VALUE_FontSize_NORMA

L_24_24

static final int VALUE_FontSize_NORMAL_D

H_24_48_IN_BOLD

2 Normal font size with

double-height (24x48),

in bold.

public static

final int

VALUE_FontSize_NORMA

L_DH_24_48_IN_BOLD

static final int VALUE_FontSize_LARGE_32_3

2

3 Large font size

(32x32).

public static

final int

VALUE_FontSize_LARGE

_32_32

static final int VALUE_FontSize_LARGE_DH_

32_64_IN_BOLD

4 Large font size with

double-height (32x64),

in bold.

public static final

int

VALUE_FontSize_LARGE

_DH_32_64_IN_BOLD

 Programmers Guide Girgit

 331
 © Verifone Inc. All rights reserved.

static final int VALUE_FontSize_HUGE_48 5 Huge font size

(48x48).

public static final

int

VALUE_FontSize_HUGE_

48

static final

String

KEY_Alignment_int "align" Key for specifying the

alignment of content.

public static final

java.lang.String

KEY_Alignment_int

static final int VALUE_Alignment_LEFT 0 Left alignment.
public static final

int

VALUE_Alignment_LEFT

static final int VALUE_Alignment_CENTER 1 Center alignment.
public static final

int

VALUE_Alignment_CENT

ER

static final int VALUE_Alignment_RIGHT 2 Right alignment.
public static final

int

VALUE_Alignment_RIGH

T

static final

String

KEY_StyleBold_boolean "bold" Key for specifying

whether the text

should be in bold.

public static final

java.lang.String

KEY_StyleBold_boolea

n

static final

boolean

VALUE_StyleBold_YES true Apply bold style.
public static final

boolean

VALUE_StyleBold_YES

static final

boolean

VALUE_StyleBold_NO false Do not apply bold

style.

public static final

boolean

VALUE_StyleBold_NO

static final

String

KEY_newline_boolean "newli

ne"

Key for specifying if a

newline (CRLF) should

be appended.

public static final

java.lang.String

KEY_newline_boolean

static final

boolean

VALUE_newline_AppendCRLF true Append a CRLF

(Carriage Return +

public static final

boolean

 Programmers Guide Girgit

 332
 © Verifone Inc. All rights reserved.

Line Feed) at the end

of the text.

VALUE_newline_Append

CRLF

static final

boolean

VALUE_newline_NoCRLF false Do not append CRLF.
public static final

boolean

VALUE_newline_NoCRLF

Nested Class Summary:

The addTextInLine class is a nested class within the ConstIPrinter utility class, which is part of the POS
system package.

Modifier and Type Class and Description

class addTextInLine

Constructor Summary:

The addTextInLine is simple and initialize the class for use, but the actual functionality comes from using
the constants and nested classes.

Constructor Constructor Detail

addTextInLine() public addTextInLine()

Nested Class Summary:

The addTextInLine class contains nested classes that further break down the functionality of in-line text
handling.

Modifier and Type Class and Description

class format

class mode

 Programmers Guide Girgit

 333
 © Verifone Inc. All rights reserved.

Nested Class Summary:

The format class within addTextInLine deals with the formatting rules for inline text. It may include
constants for things like font size, alignment, and other layout aspects, but specifically for the in-line
placement.

Modifier and Type Class and Description

class format

Constructor Summary:

The constructor format() is public and initializes the format class. However, as the class mainly contains
static constants, it is not likely to require any specific instantiation.

Constructor Constructor Detail

format() public format()

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the format class:

Modifier and

Type

Field Name Value Description Field Detail

static final

String

KEY_FontSize_int "fontSi

ze"

Key for specifying the

font size.

public static final

java.lang.String

KEY_FontSize_int

static final int VALUE_FontSize_SMALL_16_1

6

0 Small font size (16x16).
public static final

int

VALUE_FontSize_SMALL

_16_16

static final int VALUE_FontSize_NORMAL_24

_24

1 Normal font size

(24x24).

public static final

int

VALUE_FontSize_NORMA

L_24_24

 Programmers Guide Girgit

 334
 © Verifone Inc. All rights reserved.

static final int VALUE_FontSize_NORMAL_D

H_24_48_IN_BOLD

2 Normal font size with

double-height (24x48),

in bold.

public static final

int

VALUE_FontSize_NORMA

L_DH_24_48_IN_BOLD

static final int VALUE_FontSize_LARGE_32_3

2

3 Large font size

(32x32).

public static final

int

VALUE_FontSize_LARGE

_32_32

static final

String

KEY_StyleBold_boolean "bold" Key for specifying

whether the text

should be in bold.

public static final

java.lang.String

KEY_StyleBold_boolea

n

static final

boolean

VALUE_StyleBold_YES true Apply bold style.
public static final

boolean

VALUE_StyleBold_YES

static final

boolean

VALUE_StyleBold_NO false Do not apply bold

style.

public static final

boolean

VALUE_StyleBold_NO

static final

String

KEY_GlobalFont_String "fontS

tyle"

Key for specifying the

font style (language).

public static final

java.lang.String

KEY_GlobalFont_Strin

g

static final

String

VALUE_GlobalFont_CHINESE "Chine

se"

Set the font style to

Chinese.

public static final

java.lang.String

VALUE_GlobalFont_CHI

NESE

static final

String

VALUE_GlobalFont_English "Englis

h"

Set the font style to

English.

public static final

java.lang.String

VALUE_GlobalFont_Eng

lish

static final

String

VALUE_GlobalFont_Arabic "Arabi

c"

Set the font style to

Arabic.

public static final

java.lang.String

VALUE_GlobalFont_Ara

bic

Nested Class Summary:

 Programmers Guide Girgit

 335
 © Verifone Inc. All rights reserved.

The mode class defines layout modes for in-line text. Specifically, it provides constants for how the text
should be divided across the line.

Modifier and Type Class and Description

class mode

Constructor Summary:

The mode() is Public constructor that initializes the class.

Constructor Constructor Detail

mode() public mode()

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the format class:

Modifier and

Type

Field Name Value Description Field Detail

static final int Devide_Equally 0 Divide the text equally

across the available

space.

public static final

int Devide_Equally

static final int Devide_flexible 1 Allow flexible division,

which might adjust

based on content size

or other factors.

public static final

int Devide_flexible

2.3.7 ConstOnlineResultHandler

Package: com.vfi.smartpos.deviceservice.constdefine.ConstOnlineResultHandler

Overview:

 Programmers Guide Girgit

 336
 © Verifone Inc. All rights reserved.

The ConstOnlineResultHandler class is part of the POS system that is created to handle the results of
online transactions, such as payment processing, account verification, or other types of online
communications between the POS system and external services.

Class Declaration:

public class ConstOnlineResultHandler extends java.lang.Object

Main Class Summary:

This class contains static constants that represent various outcomes of online transactions responses.

Modifier and Type Class and Description

class ConstOnlineResultHandler

Constructor Summary:

The constructor is public, which means instances of the class can be created. However, this class
contains static constants, user would not need to instantiate it directly.

Constructor Constructor Detail

ConstOnlineResultHandler() public ConstOnlineResultHandler()

Nested Class Summary:

The onProccessResult class is responsible for managing the results of an online transaction or
interaction. It includes constants for different states (e.g., error codes, transaction statuses) and
categories (e.g., data and result).

 Programmers Guide Girgit

 337
 © Verifone Inc. All rights reserved.

Modifier and Type Class and Description

class onProccessResult

Constructor Summary:

The onProccessResult() is a public constructor, though it’s a utility class with constants, it is not be
instantiated directly in most cases.

Constructor Constructor Detail

onProccessResult() public onProccessResult()

Nested Class Summary:

The onProccessResult class contains two nested classes, that further defines important constants and
values that represent different aspects of the transaction result.

Modifier and Type Class and Description

class data

class result

Nested Class Summary:

The data class within onProccessResult handles specific data related to the transaction process, such as
transaction codes, scripts, and reversal data. These constants are used to store and refer to specific
types of data within the transaction process.

Modifier and Type Class and Description

class data

Constructor Summary:

The data() is a public constructor, it initialize static constants, meaning this class is mostly used to hold
static data rather than to create instances.

 Programmers Guide Girgit

 338
 © Verifone Inc. All rights reserved.

Constructor Constructor Detail

data() public data()

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the data class:

Modifier and

Type

Field Name Value Description Field Detail

static final

String

KEY_TC_DATA_String "TC_D

ATA"

Transaction data.
public static final

java.lang.String

KEY_TC_DATA_String

static final

String

KEY_SCRIPT_DATA_String "SCRI

PT_DA

TA"

Script data for

transaction

processing.

public static final

java.lang.String

KEY_SCRIPT_DATA_Stri

ng

static final

String

KEY_REVERSAL_DATA_String "REVE

RSAL_

DATA"

Reversal data for

transaction reversals.

public static final

java.lang.String

KEY_REVERSAL_DATA_St

ring

Nested Class Summary:

The result class defines constants related to the outcome of an online transaction. These result codes
likely represent different transaction states that the system can encounter.

Modifier and Type Class and Description

class result

Constructor Summary:

The result() is a public constructor, it's primarily used to define static constants rather than to
instantiate objects.

 Programmers Guide Girgit

 339
 © Verifone Inc. All rights reserved.

Constructor Constructor Detail

result() public result()

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the result class:

Modifier and

Type

Field Name Value Description Field Detail

static final int TC 0 Transaction code

(Success).

public static final

int TC

static final int Online_AAC 1 Online Account

Authentication Code

(AAC).

public static final

int Online_AAC

static final int Offline_TC 101 Offline Transaction

Code.

public static final

int Offline_TC

static final int SCRIPT_NOT_EXECUTE 102 Script execution

failed.

public static final

int

SCRIPT_NOT_EXECUTE

static final int SCRIPT_EXECUTE_FAIL 103 Script execution

failure.

public static final

int

SCRIPT_EXECUTE_FAIL

static final int NO_SCRIPT 104 No script available.
public static final

int NO_SCRIPT

static final int TOO_MANY_SCRIPTNO 105 Too many scripts.
public static final

int

TOO_MANY_SCRIPTNO

 Programmers Guide Girgit

 340
 © Verifone Inc. All rights reserved.

static final int TERMINATE 106 Terminate the

process.

public static final

int TERMINATE

static final int ERROR 107 General error.
public static final

int ERROR

2.3.8 ConstPBOCHandler

Package: com.vfi.smartpos.deviceservice.constdefine.ConstPBOCHandler

Overview:

The ConstPBOCHandler class is part of the POS system, specifically within the software package. It is a
utility class used for handling PBOC transactions involving smart cards or chip cards.

Class Declaration:

public class ConstPBOCHandler extends java.lang.Object

Main Class Summary:

The ConstPBOCHandler class is created to manage various aspects of a PBOC transaction process, which
is used in EMV smart card transactions.

Modifier and Type Class and Description

class ConstPBOCHandler

Constructor Summary:

The ConstPBOCHandler class has a simple constructor. This constructor initializes the handler, possibly
setting up resources or configuration necessary for the PBOC transaction flow.

Constructor Constructor Detail

ConstPBOCHandler() public ConstPBOCHandler()

 Programmers Guide Girgit

 341
 © Verifone Inc. All rights reserved.

Nested Class Summary:

There are several nested classes within ConstPBOCHandler that handle various stages of the PBOC
transaction process:

Modifier and Type Class and Description

class onConfirmCardInfo

class onRequestOnlineProcess

class onTransactionResult

Nested Class Summary:

The nested class onConfirmCardInfo within the ConstPBOCHandler class play a critical role in handling
the card information during a PBOC transaction process.

Modifier and Type Class and Description

class onConfirmCardInfo

Constructor Summary:

This constructor initializes an instance of the onConfirmCardInfo class. this class is responsible for
handling the process where the system confirms the card information, after reading data from the smart
card in a PBOC transaction.

Constructor Constructor Detail

onConfirmCardInfo() public onConfirmCardInfo()

Nested Class Summary:

The info class has a simple data container for holding different pieces of card-related information. It is
used within the onConfirmCardInfo class to store the card details that are confirmed during the
transaction process.

 Programmers Guide Girgit

 342
 © Verifone Inc. All rights reserved.

Modifier and Type Class and Description

class info

Constructor Summary:

This constructor initializes an instance of the info class, which holds key card-related data, and prepares
it for usage in the confirmation process.

Constructor Constructor Detail

info() public info()

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the info class:

Modifier and

Type

Field Name Value Description Field Detail

static final

String

KEY_PAN_String "PAN" The PAN card number.
public static

final java.lang.Stri

ng KEY_PAN_String

static final

String

KEY_TRACK2_String "TRAC

K2"

Track 2 data.
public static

final java.lang.Stri

ng KEY_TRACK2_String

static final

String

KEY_CARD_SN_String "CARD

_SN"

Card serial number.
public static

final java.lang.Stri

ng

KEY_CARD_SN_String

static final

String

KEY_SERVICE_CODE_String "SERV

ICE_C

ODE"

Service code.
public static final

java.lang.String

KEY_SERVICE_CODE_Str

ing

 Programmers Guide Girgit

 343
 © Verifone Inc. All rights reserved.

static final

String

KEY_EXPIRED_DATE_String "EXPI

RED_

DATE"

Expiration date.
public static final

java.lang.String

KEY_EXPIRED_DATE_Str

ing

Nested Class Summary:

The nested class onRequestOnlineProcess play important roles in managing the online transaction
process, specifically in the PBOC transactions.

Modifier and Type Class and Description

class onRequestOnlineProcess

Constructor Summary:

The constructor for the onRequestOnlineProcess class is a simple public constructor that initializes an
instance of the class.

Constructor Constructor Detail

onRequestOnlineProcess() public onRequestOnlineProcess()

Nested Class Summary:

The aaResult class, nested within onRequestOnlineProcess, to handle the result of the online transaction
request process.

Modifier and Type Class and Description

class aaResult

Constructor Summary:

This constructor initializes an instance of the aaResult class. It is used to handle and store the result of an
online transaction request.

 Programmers Guide Girgit

 344
 © Verifone Inc. All rights reserved.

Constructor Constructor Detail

aaResult() public aaResult()

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the aaResult
class:

Modifier and

Type

Field Name Value Description Field Detail

static final

String

KEY_RESULT_int "RESU

LT"

Identifies the result of

the transaction.

public static final

java.lang.String

KEY_RESULT_int

static final int VALUE_RESULT_QPBOC_ARQ

C

201 Authorization Request

Cryptogram (ARQC)

result code for PBOC.

public static final

int

VALUE_RESULT_QPBOC_A

RQC

static final int VALUE_RESULT_AARESULT_A

RQC

2 ARQC result for

AARESULT (EMV

standard).

public static final

int

VALUE_RESULT_AARESUL

T_ARQC

static final int VALUE_RESULT_PAYPASS_MA

G_ARQC

302 ARQC result for

PayPass magnetic

stripe transactions.

public static final

int

VALUE_RESULT_PAYPASS

_MAG_ARQC

static final int VALUE_RESULT_PAYPASS_EM

V_ARQC

303 ARQC result for

PayPass EMV

transactions.

public static final

int

VALUE_RESULT_PAYPASS

_EMV_ARQC

 Programmers Guide Girgit

 345
 © Verifone Inc. All rights reserved.

static final

String

KEY_ARQC_DATA_String "ARQ

C_DA

TA"

Stores ARQC data.
public static final

java.lang.String

KEY_ARQC_DATA_String

static final

String

KEY_REVERSAL_DATA_String "REVE

RSAL_

DATA"

Stores reversal data.
public static final

java.lang.String

KEY_REVERSAL_DATA_St

ring

Nested Class Summary:

The onTransactionResult class, along with its nested classes data and result, is responsible for
managing and processing the results of a transaction after the transaction has been processed, either
online or offline.

Modifier and Type Class and Description

class onTransactionResult

Constructor Summary:

The constructor onTransactionResult() initializes an instance of the onTransactionResult class. This
class is responsible for handling and interpreting the result of a transaction, whether it is successful,
declined, or encounters an error during the process.

Constructor Constructor Detail

onTransactionResult() public onTransactionResult()

Nested Class Summary:

There are two nested classes within onTransactionResult that are used to handle and store the result of
a transaction, providing a structured way to capture both the transaction details and the status.

Modifier and Type Class and Description

class data

 Programmers Guide Girgit

 346
 © Verifone Inc. All rights reserved.

class result

Nested Class Summary:

The data class is used to store the details of a transaction. It contains information that is needed to
record or report on the transaction.

Modifier and Type Class and Description

class data

Constructor Summary:

The data class has a simple constructor, this constructor initializes an instance of the data class.

Constructor Constructor Detail

data() public data()

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the data class:

Modifier and

Type

Field Name Value Description Field Detail

static final

String

KEY_TC_DATA_String "TC_DA

TA"

A key used for storing or

retrieving the Transaction

Code (TC) data.

public static

final java.lang.Stri

ng

KEY_TC_DATA_String

static final

String

KEY_REVERSAL_DATA_

String

"REVER

SAL_DA

TA"

A key used for storing or

retrieving Reversal Data

(e.g., information related to

cancelled or reversed

transactions).

public static

final java.lang.Stri

ng

KEY_REVERSAL_DATA_St

ring

 Programmers Guide Girgit

 347
 © Verifone Inc. All rights reserved.

static final

String

KEY_ERROR_String "ERROR

"

A key used for storing or

retrieving Error Information

(e.g., error codes or

messages related to

transaction failures).

public static

final java.lang.Stri

ng KEY_ERROR_String

Nested Class Summary:

The result class holds information about the outcome of the transaction. It is created to store the status
or result of the transaction.

Modifier and Type Class and Description

class result

Constructor Summary:

This is the default constructor for the result class. It initializes an instance of the result class but given
that the class primarily deals with static constants.

Constructor Constructor Detail

result() public result()

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the result class:

Modifier and

Type

Field Name Value Description Field Detail

static final int EMV_COMPLETE 9 Represents the completion

of an EMV transaction

(chip card).

public static final

int EMV_COMPLETE

 Programmers Guide Girgit

 348
 © Verifone Inc. All rights reserved.

static final int AARESULT_TC 0 Represents a transaction

result with TC.

public static final

int AARESULT_TC

static final int AARESULT_AAC 1 Represents a transaction

result with Application

Authentication Completed

(AAC).

public static final

int AARESULT_AAC

static final int EMV_CARD_BIN_CHECK_

FAIL

24 Represents a failure during

the Card Bank

Identification Number (BIN)

Check in an EMV

transaction.

public static final

int

EMV_CARD_BIN_CHECK_F

AIL

static final int EMV_MULTI_CARD_ERRO

R

26 Represents an error when

multiple cards are detected

during EMV transaction

processing.

public static final

int

EMV_MULTI_CARD_ERROR

2.3.9 CTLSKernelID

Package: com.vfi.smartpos.deviceservice.constdefine.CTLSKernelID

Overview:

The CTLSKernelID class is part of the POS system software, specifically within the package. It plays a
important role in defining kernel identifiers (Kernel IDs) for contactless transactions, used for handling
NFC payments like contactless cards, smartphones, and other RFID-enabled devices.

Class Declaration:

public class CTLSKernelID extends java.lang.Object

Main Class Summary:

 Programmers Guide Girgit

 349
 © Verifone Inc. All rights reserved.

The CTLSKernelID class is part of the POS system used to define various kernel IDs for contactless
transactions. These kernel IDs represent the contactless payment protocols for different payment brands.
Additionally, it includes a custom kernel ID for proprietary systems.

Modifier and Type Class and Description

class CTLSKernelID

Constructor Summary:

The CTLSKernelID class has a simple constructor, and it initializes an instance of the CTLSKernelID class.
Since the class is mostly used to define static constants, this constructor does not contain complex
logic.

Constructor Constructor Detail

CTLSKernelID() public CTLSKernelID()

Static Public Attributes:

The following table lists Modifier and Type, Field, Value, Description and Field Detail for the CTLSKernelID
class:

Modifier and

Type

Field Name Value Description Field Detail

static final int CTLS_KERNEL_ID_01_VISA 1
Kernel ID for Visa
contactless
transactions.

public static final int

CTLS_KERNEL_ID_01_VISA

static final int CTLS_KERNEL_ID_02_MA

STER

2
Kernel ID for Mastercard
contactless
transactions.

public static final int

CTLS_KERNEL_ID_02_MASTE

R

static final int CTLS_KERNEL_ID_03_VIS

A

3
Kernel ID for Visa
contactless
transactions (alternative
kernel).

public static final int

CTLS_KERNEL_ID_03_VISA

 Programmers Guide Girgit

 350
 © Verifone Inc. All rights reserved.

static final int CTLS_KERNEL_ID_04_AE 4
Kernel ID for American
Express contactless
transactions.

public static final int

CTLS_KERNEL_ID_04_AE

static final int CTLS_KERNEL_ID_05_JCB 5
Kernel ID for JCB
contactless
transactions.

public static final int

CTLS_KERNEL_ID_05_JCB

static final int CTLS_KERNEL_ID_06_DIS

COVER

6
Kernel ID for Discover
contactless
transactions.

public static final int

CTLS_KERNEL_ID_06_DISCO

VER

static final int CTLS_KERNEL_ID_07_UNI

ONPAY

7
Kernel ID for UnionPay
contactless
transactions.

public static final int

CTLS_KERNEL_ID_07_UNION

PAY

static final int CTLS_KERNEL_ID_PURE 13455

445

Custom or proprietary
contactless payment
kernel ID.

public static final int

CTLS_KERNEL_ID_PURE

 Programmers Guide Girgit

 351
 © Verifone Inc. All rights reserved.

3. Logging
To enable logging in Girgit, ensure the following configurations and permissions are properly set:

1. Configuration Files

Girgit requires specific configuration files, namely `GirgitJ_log.conf` and `GirgitN_log.conf`.

Described below are the sample json values for these files.

{

 "schema_version": "1.0",

 "enabled": true,

 "mask": 255,

 "verbosity": 7,

 "output": "LOGAPI_ALL"

}

NOTE
These config files will be provided as .zip. Refer to Section 1.2.3 and
1.2.2.3 for more details on the installation process.

The following table lists the masks that can be set based on the prod/debug devices. For prod device,
set 15 or 31 mask value.

Log level Bitmask Log level description

LOGAPI_EMERG 1 Emergency / system is unusable

LOGAPI_ALERT 2 An immediate action must be taken

LOGAPI_CRIT 4 Critical conditions

 Programmers Guide Girgit

 352
 © Verifone Inc. All rights reserved.

LOGAPI_ERROR 8 Error reporting

LOGAPI_WARN 16 Warning reporting

LOGAPI_NOTICE 32 Normal, but significant condition

LOGAPI_INFO 64 Regular info message

LOGAPI_TRACE 128 High verbosity messages

NOTE
The log mask values mentioned in the above table are added. For
example, if LOGAPI_EMERG (1) and LOGAPI_ERROR (8) are needed then
the mask value becomes 9 (1+8).

2. Android Permissions

Android 13 and up need to request MANAGE_EXTERNAL_STORAGE permission to function properly. Add
the permission in the Android Manifest file:

<?xml version="1.0" encoding="utf-8"?>

 <manifest ...>

 ...

 <uses-permission android:name="android.permission.MANAGE_EXTERNAL_STORAGE"/>

 ...

 </manifest>

</xml>

Also, this permission has to be requested programmatically for it to be granted (adding this permission in
the android manifest is not enough). Code similar to the following should be used to request those
permissions:

private static final int STORAGE_PERMISSION_CODE = 23;

 Programmers Guide Girgit

 353
 © Verifone Inc. All rights reserved.

public boolean checkStoragePermissions() {

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.R) {

 //Android is 11 (R) or above

 return Environment.isExternalStorageManager();

 }

}

private void requestForStoragePermissions() {

 //Android is 11 (R) or above

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.R) {

 try {

 Intent intent = new Intent();

 intent.setAction(Settings.ACTION_MANAGE_APP_ALL_FILES_ACCESS_PERMISSION);

 Uri uri = Uri.fromParts("package", this.getPackageName(), null);

 intent.setData(uri);

 this.startActivity(intent);

 } catch (Exception e) {

 Intent intent = new Intent();

 intent.setAction(Settings.ACTION_MANAGE_ALL_FILES_ACCESS_PERMISSION);

 this.startActivity(intent);

 }

 }

}

 Programmers Guide Girgit

 354
 © Verifone Inc. All rights reserved.

Appendix A: Supporting Classes

1. BLKData
Package: com.vfi.smartpos.deviceservice.aidl.BLKData

Overview:

The BLKData class implements the Parcelable interface, allowing it to be serialized and passed between
different Android components. It encapsulates the data related to a card block and its corresponding
transaction serial number.

Inheritance diagram:

NOTE
BLKData is a java class and is called using the constructor
BLKData(byte[] cardblk, byte sn).

Constructor:

BLKData(byte[] cardblk, byte sn)

This parameterized constructor initializes an instance of the `BLKData` class with the
specified card block data and transaction serial number.

Parameters

 Programmers Guide Girgit

 355
 © Verifone Inc. All rights reserved.

cardblk The byte array representing the card block data.

sn The transaction serial number associated with the card block.

Member Functions:

Modifier and Type Method

byte[] getCardblk ()

byte getSn ()

Member Function Documentation:

getCardblk()

This method retrieves the byte array representing the card block data. This could include
information related to a payment card or some other data block.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.BLKData.getCardblk()

Parameters

None.

Return Values

A byte array that contains the card block data.

 Programmers Guide Girgit

 356
 © Verifone Inc. All rights reserved.

getSn()

Retrieves the transaction serial number associated with the card block. This is used for
tracking or processing the transaction.

Prototype

byte com.vfi.smartpos.deviceservice.aidl.BLKData.getSn()

Parameters

None.

Return Values

A byte array that contains the serial number.

2. CandidateAppInfo
Package: com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo

Overview:

This class is constructed to encapsulate and manage information about candidate applications of EMV
cards. It includes methods to set and retrieve various attributes like Application Identifier (AID),
Application Label, Application Priority Number (APN), Application Priority Indicator (APID), language
preferences, and Issuer Country Code Index (CT Index).

Key Responsibilities:

• Application Metadata: It manages various metadata associated with the application, such as the
Application Label, APN, and APID.

• Language Preferences: The class handles language preferences, ensuring that the application can
adapt to different linguistic settings based on user or system preferences.

• Issuer Country Code Index: It stores and retrieves the Issuer CT Index and its associated flag,
which are critical for applications that need to manage country-specific data or operations.

 Programmers Guide Girgit

 357
 © Verifone Inc. All rights reserved.

Inheritance diagram:

Public Member Functions:

Modifier and Type Method

void setAID (byte[] aid)

byte[] getAID ()

void setAppLabel (byte[] appLabel)

byte[] getAppLabel ()

void setAPN (byte[] apn)

byte[] getAPN ()

void setAPID (byte apid)

byte getAPID ()

void setAPIDFlag (byte flag)

byte getAPIDFlag ()

void setLangPref (byte[] langPref)

byte[] getLangPref ()

void setIssCTIndex (byte index)

 Programmers Guide Girgit

 358
 © Verifone Inc. All rights reserved.

byte getIssCTIndex ()

void setIssCTIndexFlag (byte flag)

byte getIssCTIndexFlag ()

Member Function Documentation:

setAID()

This method is used to set the AID for the candidate application. The AID is a unique
identifier crucial for identifying a specific application on a card.

Prototype

void com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.setAID(byte[] aid)

Parameters

aid A byte array representing the AID of the application.

Return Values

void

getAID()

This method is used to retrieve the AID of the candidate application.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.getAID()

Parameters

 Programmers Guide Girgit

 359
 © Verifone Inc. All rights reserved.

None.

Return Values

A byte array representing the AID of the application.

setAppLabel

This method is used to set the application label for the candidate application. This label is
used to identify or describe the application of a card.

Prototype

void com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.setAppLabel(byte[]

appLabel)

Parameters

appLabel A byte array that contains the label of the application.

Return Values

void

getAppLabel()

This method is used to retrieve the application label for the candidate application.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.getAppLabel()

Parameters

 Programmers Guide Girgit

 360
 © Verifone Inc. All rights reserved.

None.

Return Values

A byte array representing the application label.

setAPN()

This method is used to set the APN for the candidate application. The APN is crucial for
establishing a data connection to a mobile network. This method allows you to configure
the APN settings required for the application to communicate over cellular networks.

Prototype

void com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.setAPN(byte[] apn)

Parameters

apn A byte array representing the APN.

Return Values

void

getAPN()

This method is used to retrieve the APN for the candidate application.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.getAPN()

Parameters

None.

 Programmers Guide Girgit

 361
 © Verifone Inc. All rights reserved.

Return Values

A byte array representing the APN.

setAPID()

This method is used to set the APID for the candidate application. This identifier helps
prioritize applications during selection.

Prototype

void com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.setAPID(byte[] apid)

Parameters

apid A byte representing the APID.

Return Values

void

getAPID()

This method is used to retrieve the APID for the candidate application.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.getAPID()

Parameters

None.

Return Values

 Programmers Guide Girgit

 362
 © Verifone Inc. All rights reserved.

A byte representing the APID.

setAPIDFlag()

This method is used to set the flag associated with the APID. This flag is used to indicate
whether the application is active or to represent other relevant states.

Prototype

void com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.setAPIDFlag(byte[]

flag)

Parameters

flag A byte representing the APID flag.

Return Values

void

getAPIDFlag()

This method is used to retrieve the flag associated with the APID.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.getAPIDFlag()

Parameters

None.

Return Values

 Programmers Guide Girgit

 363
 © Verifone Inc. All rights reserved.

A byte representing the APID flag.

setLangPref()

This method is used to set the language preference for the candidate application. This is
useful in cards supporting multiple languages, ensuring that the application will display
content in the correct language for the user.

Prototype

void com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.setLangPref(byte[]

langPref)

Parameters

langPref A byte array representing the language preference.

Return Values

void

getLangPref()

This method is used to retrieve the language preference for the candidate application.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.getLangPref()

Parameters

None.

Return Values

 Programmers Guide Girgit

 364
 © Verifone Inc. All rights reserved.

A byte array representing the language preference.

setIssCTIndex()

This method is used to set the IssCTIndex. This index represents the geographical region
or country of the application’s issuer.

Prototype

void com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.setIssCTIndex(byte[]

index)

Parameters

index A byte representing the IssCTIndex.

Return Values

void

getIssCTIndex()

This method is used to retrieve the IssCTIndex.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.getIssCTIndex()

Parameters

None.

Return Values

A byte representing the IssCTIndex.

 Programmers Guide Girgit

 365
 © Verifone Inc. All rights reserved.

setIssCTIndexFlag()

This method is used to set the flag associated with the IssCTIndex. This flag is used to
indicate whether the country code index is valid for the current setting.

Prototype

void

com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.setIssCTIndexFlag(byte[]

index)

Parameters

index A byte representing the flag for the IssCTIndex.

Return Values

void

getIssCTIndexFlag()

This method is used to retrieve the flag associated with the IssCTIndex.

Prototype

byte[]

com.vfi.smartpos.deviceservice.aidl.CandidateAppInfo.getIssCTIndexFlag()

Parameters

None.

Return Values

A byte representing the flag for the IssCTIndex.

 Programmers Guide Girgit

 366
 © Verifone Inc. All rights reserved.

3. DRLData
Package: com.vfi.smartpos.deviceservice.aidl.DRLData

Overview:

The DRLData class is created to encapsulate information about the Dynamic Reader Limit (DRL)
configuration and any relevant data about the transaction or device-related limits. This class enables you
to retrieve, set, and monitor dynamic limits on the card reader or terminal.

Inheritance diagram:

Constructor:

DRLData(byte[] drlID, byte[] clssFloorLimit, byte[] clssTransLimit, byte[]
cvmRequiredLimit)

This is the parameterized constructor for the DRLData class. It is used to initialize an
instance of the class, with the specified dynamic reader limits for DRL ID, CLSS floor limit,
CLSS transaction limit, and CVM required limit.

Parameters

drlID A byte array representing the DRL ID, which uniquely identifies the
set of dynamic limits.

clssFloorLimit A byte array representing the floor limit for contactless
transactions.

clssTransLimit A byte array representing the transaction limit for contactless
transactions.

cvmRequiredLimit A byte array representing the CVM required limit.

 Programmers Guide Girgit

 367
 © Verifone Inc. All rights reserved.

Public Member Functions:

Modifier and Type Method

byte[] getDrlID ()

byte[] getClssFloorLimit ()

byte[] getClssTransLimit ()

byte[] getCvmRequiredLimit ()

Member Function Documentation:

getDrlID()

This method is used to retrieve the DRL ID, which is a unique identifier for a particular set
of dynamic reader limits.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.DRLData.getDrlID()

Parameters

None.

Return Values

The method returns a byte array representing the DRL ID.

 Programmers Guide Girgit

 368
 © Verifone Inc. All rights reserved.

getClssFloorLimit()

This method retrieves the CLSS Floor Limit, which is the minimum transaction amount,
that can be processed using Contactless transactions.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.DRLData.getClssFloorLimit()

Parameters

None.

Return Values

Returns a byte array that represents the floor limit value for CLSS transactions in a format
(e.g., as a BigDecimal or an integer encoded as bytes).

getClssTransLimit()

This method retrieves the CLSS Transaction Limit, which is the maximum transaction
amount allowed for Contactless (CLSS) transactions.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.DRLData.getClssTransLimit()

Parameters

None.

Return Values

Returns a byte array representing the transaction limit for contactless transactions.

 Programmers Guide Girgit

 369
 © Verifone Inc. All rights reserved.

getCvmRequiredLimit()

This method retrieves the CVM Required Limit. This represents the limit above which CVM
is required for the transaction to proceed.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.DRLData.getCvmRequiredLimit()

Parameters

None.

Return Values

Returns a byte array that encodes the limit above which CVM is required.

4. IExternalSerialPort
Package: com.vfi.smartpos.deviceservice.aidl.IExternalSerialPort

Overview:

This interface provides methods for interacting with external serial ports on a device. It is creäted to
manage communication through serial ports, which can be used to connect various peripherals such as
Pinpads, barcode scanners, printers, or other serial-based devices.

Public Member Functions:

Modifier and Type Method

int setExtPinpadPortMode (int portMode)

boolean isExternalConnected ()

boolean openSerialPort (int portNum, in SerialDataControl dataControl)

 Programmers Guide Girgit

 370
 © Verifone Inc. All rights reserved.

int writeSerialPort (int portNum, in byte[] writeData, int dataLength)

int readSerialPort (int portNum, out byte[] readData, int dataLength)

int safeWriteSerialPort (int portNum, in byte[] writeData, int Length, long timeoutMs)

int safeReadSerialPort (int portNum, out byte[] readData, int Length, long timeoutMs)

void closeSerialPort (int portNum)

Member Function Documentation:

setExtPinpadPortMode()

This method is used to set or configure the mode of the Pinpad port. The Pinpad port can
operate in different modes, such as:

• Transparent Transmission Mode.
• External PP1000V3 Pinpad Mode.
• External PP1000V3 Non-contact Mode.

The default mode is transparent transmission, and the chosen mode will remain active
even after the device is powered off. However, when one mode is set, it will disable other
function interfaces.

NOTE
Switching modes will require calling this function again.

Prototype

int

com.vfi.smartpos.deviceservice.aidl.IExternalSerialPort.setExtPinpadPortMode(int

portMode)

Parameters

 Programmers Guide Girgit

 371
 © Verifone Inc. All rights reserved.

portMode Specifies the function mode for the Pinpad port. If an undefined
value is provided, the mode will not be changed, and the current
mode will be returned instead.

Return Values

Returns the current function mode of the Pinpad port.

isExternalConnected()

This method checks whether the POS system is connected to an external base device. If
the base device is successfully connected, it returns true; otherwise, it returns false.

Prototype

boolean

com.vfi.smartpos.deviceservice.aidl.IExternalSerialPort.isExternalConnected()

Parameters

None.

Return Values

A Boolean value:

true: If the POS system is connected to the base device.

false: If the POS system is not connected to the base device.

 Programmers Guide Girgit

 372
 © Verifone Inc. All rights reserved.

openSerialPort()

This method opens the specified serial port and configures its data control properties,
including baud rate, data bits, stop bits, and parity. If the port is already open, it will return
true without performing any further actions.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IExternalSerialPort.openSerialPort

(int portNum, in SerialDataControl dataControl)

Parameters

portNum Specifies the port to be opened.

 0: Refer to the Pinpad port (with 5V power supply).

1: Refer to the RS232 (standard serial port);

dataControl Defines the data control settings for the serial port, such as baud
rate, data bits, stop bits, and parity.

Return Values

A Boolean value:

true: The serial port was successfully opened.

false: The attempt to open the serial port failed. In this case, read/write operations
will return 0.

writeSerialPort()

This method is used for writing data to a specified serial port. It initiates non-blocking
data transmission to devices via serial communication.

 Programmers Guide Girgit

 373
 © Verifone Inc. All rights reserved.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IExternalSerialPort.writeSerialPort

(int portNum, in byte[] writeData, int dataLength)

Parameters

portNum Specifies which serial port to use for the communication.

 0: Refer to the Pinpad port (with 5V power supply).

1: Refer to the RS232 (standard serial port).

writeData The cache of data to be transferred.

dataLength The length of data to be transferred.

Return Values

The function returns the actual length of the data that was transmitted. A return value of
0 indicates that no data was sent. If the return value is a negative number, it signifies an
error.

 Programmers Guide Girgit

 374
 © Verifone Inc. All rights reserved.

readSerialPort()

This method is used to read the available data from the specified serial port and returns
the length of the data that was successfully read. It facilitates non-blocking reads from a
serial port.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IExternalSerialPort.readSerialPort

(int portNum, out byte[] readData, intdataLength)

Parameters

portNum Specifies which serial port to use for the communication.

 0: Refer to the Pinpad port (with 5V power supply).

1: Refer to the RS232 (standard serial port).

readData Holds the buffer in which the data must be read.

dataLength The length of the data user wants to read (cannot exceed the
buffer size).

Return Values

Returns the length of the data that is read. A return value of 0 indicates that no data was
sent. If the return value is a negative number, it signifies an error.

 Programmers Guide Girgit

 375
 © Verifone Inc. All rights reserved.

safeWriteSerialPort()

This method is used for writing data to a specified serial port in a blocking manner. This
means the method will wait until the data transmission is either completed successfully
or the operation times out. The function returns the length of the data that was
successfully transmitted.

Prototype

int

com.vfi.smartpos.deviceservice.aidl.IExternalSerialPort.safeWriteSerialPort

(int portNum, in byte[] writeData, int Length, long timeoutMs)

Parameters

portNum Specifies which serial port to use for the communication.

 0: Refer to the Pinpad port (with 5V power supply).

1: Refer to the RS232 (standard serial port).

writeData The cache of data to be transferred.

dataLength The length of data to be transferred.

timeoutMs Timeout period in milliseconds.

Return Values

Returns the length of the data that occurred. A return value of 0 indicates that no data
has been sent out after the timeout. If the return value is a negative number, it signifies an
error.

 Programmers Guide Girgit

 376
 © Verifone Inc. All rights reserved.

safeReadSerialPort()

This method is used for blocking reads from a serial port. It attempts to read data from
the specified port, waiting until data is available or the timeout period expires. The
function then returns the length of the data that was successfully read.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IExternalSerialPort.safeReadSerialPort

(int portNum, out byte[] readData, int Length, long timeoutMs)

Parameters

portNum Specifies which serial port to use for communication.

 0: Refer to the Pinpad port (with 5V power supply).

1: Refer to the RS232 (standard serial port).

readData Holds the buffer in which the data must be read.

dataLength The length of the data user wants to read (cannot exceed the
buffer size).

timeoutMs Timeout period in milliseconds.

Return Values

Returns the length of the data that is read. A return value of 0 indicates that no data has
been sent out after the timeout. If the return value is a negative number, it signifies an
error.

 Programmers Guide Girgit

 377
 © Verifone Inc. All rights reserved.

closeSerialPort()

This method is used to close a specified serial port, effectively turning off or disabling the
communication on that port.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IExternalSerialPort.closeSerialPort

(int portNum)

Parameters

portNum Specifies which serial port to close.

 0: Refer to the Pinpad port (with 5V power supply).

1: Refer to the RS232 (standard serial port).

Return Values

void

5. ILed
Package: com.vfi.smartpos.deviceservice.aidl.ILed

Overview:

The ILed interface provides methods to control the LED lights on a device. It allows for operations such
as turning LEDs on, turning them off, and controlling their states.

Public Member Functions:

Modifier and
Type

Method

void turnOn (int led)

 Programmers Guide Girgit

 378
 © Verifone Inc. All rights reserved.

void turnOff (int led)

void ledControl (byte led, byte status)

Member Function Documentation:

turnOn()

This method is used to turn on a specific LED on the device, based on the provided LED
index.

Prototype

void com.vfi.smartpos.deviceservice.aidl.ILed.turnOn (int led)

Parameters

led The index of the LED that needs to be turned on.

 1: Blue LED.

2: Yellow LED.

3: Green LED.

4: Red LED.

Return Values

void

turnOff()

 Programmers Guide Girgit

 379
 © Verifone Inc. All rights reserved.

This method is used to turn off a specific LED on the device, based on the provided LED
index.

Prototype

void com.vfi.smartpos.deviceservice.aidl.ILed.turnOff (int led)

Parameters

led The index of the LED that needs to be turned off.

 1: Blue LED.

2: Yellow LED.

3: Green LED.

4: Red LED.

Return Values

void

ledControl()

This method is used to control the state of a specific LED on the device, allowing user to
turn it on or off based on the provided status.

Prototype

void com.vfi.smartpos.deviceservice.aidl.ILed.ledControl (byte led,

byte status)

Parameters

led The index of the LED to control. The values correspond to specific
LED colors:

 Programmers Guide Girgit

 380
 © Verifone Inc. All rights reserved.

 0x01: Blue LED.

0x02: Yellow LED.

0x03: Green LED.

0x04: Red LED.

status The status of the LED.

 0: Turn the LED off (close).

1: Turn the LED on (open).

Return Values

void

6. IMagCardReader
Package: com.vfi.smartpos.deviceservice.aidl.IMagCardReader

Overview:

This interface provides methods to interact with a magnetic card reader device. These methods allow
user to initiate card searches, stop searches, and enable specific tracks for reading magnetic data from
cards.

Public Member Functions:

Modifier and Type Method

void searchCard (int timeout, MagCardListener listener)

void stopSearch ()

 Programmers Guide Girgit

 381
 © Verifone Inc. All rights reserved.

void enableTrack (int trkNum)

Member Function Documentation:

searchCard()

This method is used to search for a magnetic card in a non-blocking manner, allowing the
system to detect the presence of a card while continuing other operations.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IMagCardReader.searchCard (int

timeout, MagCardListener listener)

Parameters

timeout Specifies the timeout duration in seconds for searching the card. If
a card is not detected within this period, the search will stop.

listener A callback listener that will be triggered when a card is swiped. The
listener handles the events related to the card swipe. Refer to
MagCardListener.

Return Values

void

stopSearch()

This method is used to stop the ongoing card search process.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IMagCardReader.stopSearch ()

 Programmers Guide Girgit

 382
 © Verifone Inc. All rights reserved.

Parameters

None.

Return Values

void

enableTrack()

This method is used to enable a specific track for reading on the magnetic card reader.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IMagCardReader.enableTrack (int

trkNum)

Parameters

trkNum Specifies which track data of the magnetic card must be read. It
can be either of the following:

 Track 1 data

Track 2 data

Return Values

void

7. UPCardListener
Package: com.vfi.smartpos.deviceservice.aidl.UPCardListener

Overview:

 Programmers Guide Girgit

 383
 © Verifone Inc. All rights reserved.

This interface is used for managing events related to Uni-Pay mobile cards. It handles both successful
card read operations and various error conditions, assisting developers in creating robust card
processing applications.

Public Member Functions:

Modifier and Type Method

void onRead (out Bundle data)

void onError (int error, String message)

Member Function Documentation:

onRead()

This method is used to handle the successful reading of card data, typically after a smart
card (such as an EMV, NFC, or chip card) has been inserted into the reader and the reader
has successfully processed the card.

Prototype

void com.vfi.smartpos.deviceservice.aidl.UPCardListener.onRead (out Bundle data)

Parameters

data A Bundle object containing key-value pairs with the card information that was
successfully read. The data typically includes the following:

 PAN(String) The PAN card number.

TRACK2(String) Track 2 data.

TRACK3(String) Track 3 data.

CARD_SN(String) The serial number of the card.

 Programmers Guide Girgit

 384
 © Verifone Inc. All rights reserved.

EXPIRED_DATE(String) The expiration date of the card.

TLV_DATA(String) The TLV format used to structure the card data.
Common tags include: DF32, DF33, DF34.

Return Values

void

onError()

This method is invoked when an error occurs during the card reading process. It provides
error details that can be used to understand and handle the issue.

Prototype

void com.vfi.smartpos.deviceservice.aidl.UPCardListener.onError (int error,

String message)

Parameters

error An integer value that represents the error code, indicating the type of error that
occurred. The error codes include:

 ERROR_DETECT_CARD
(1)

An error occurred while detecting the card.

ERROR_READ_SN (2) An error occurred while reading the SN of
the card.

ERROR_READ_TRACK (3) An error occurred while reading the track
information from the card.

ERROR_SERVICE_CRASH
(4)

The service crashed.

 Programmers Guide Girgit

 385
 © Verifone Inc. All rights reserved.

ERROR_NULL_DRIVER (5) An error occurred when the contactless
driver is null or missing.

message A description of the error, providing additional context for troubleshooting.

Return Values

void

8. MagCardListener
Package: com.vfi.smartpos.deviceservice.aidl.MagCardListener

Overview:

This interface defines the callbacks for managing the outcomes of swiping a magnetic card on a device.
It assists in handling successful swipe operations, errors during card reading, and timeouts.

Public Member Functions:

Modifier and Type Method

void onSuccess (in Bundle track)

void onError (int error, String message)

void onTimeout ()

 Programmers Guide Girgit

 386
 © Verifone Inc. All rights reserved.

Member Function Documentation:

onSuccess()

This method is called when the system successfully reads the data from a magnetic stripe
card.

Prototype

void com.vfi.smartpos.deviceservice.aidl.MagCardListener.onSuccess (in Bundle

track)

Parameters

track A Bundle object containing the card information that was successfully read.
The data includes:

 PAN(String) The PAN card number.

TRACK1(String) Track 1 data.

TRACK2(String) Track 2 data.

TRACK3(String) Track 3 data.

SERVICE_CODE(String) The service code associated with the card.

EXPIRED_DATE(String) The expiration date of the card.

Return Values

void

 Programmers Guide Girgit

 387
 © Verifone Inc. All rights reserved.

onError()

This method is triggered when an error occurs during the card swiping process, providing
details on the nature of the error.

Prototype

void com.vfi.smartpos.deviceservice.aidl.MagCardListener.onError (int error,

String message)

Parameters

error An integer representing the error code, which indicates the type of error that
occurred during the magnetic card swipe. Possible error codes include:

 SERVICE_CRASH (99) Indicates that the service has crashed.

REQUEST_EXCEPTION
(100)

Represents an exception that occurred
during the card read request.

MAG_SWIPE_ERROR (1) Indicates a failure in swiping the magnetic
card.

message A description of the error, providing additional context about the error.

Return Values

void

onTimeout()

This method is called when the card swiping operation fails to complete within a specified
timeframe.

Prototype

void com.vfi.smartpos.deviceservice.aidl.MagCardListener.onTimeout ()

 Programmers Guide Girgit

 388
 © Verifone Inc. All rights reserved.

Parameters

None.

Return Values

void

9. RFSearchListener
Package: com.vfi.smartpos.deviceservice.aidl.RFSearchListener

Overview:

This interface is used for managing CTLS card search operations. It provides methods to handle events
related to the detection of contactless cards and errors that may occur during the card search process.

Public Member Functions:

Modifier and Type Method

void onCardPass (int cardType)

void onFail (int error, String message)

Member Function Documentation:

onCardPass()

This method is called when a contactless card is successfully detected during the CTLS
card search process.

Prototype

 Programmers Guide Girgit

 389
 © Verifone Inc. All rights reserved.

void com.vfi.smartpos.deviceservice.aidl.RFSearchListener.onCardPass (int

cardType)

Parameters

cardType An integer indicating the type of card detected. The card types are
represented by constants, which define different types of contactless cards.
The possible card types:

 S50_CARD(0x00) S50 MIFARE card.

S70_CARD(0x01) S70 MIFARE card.

PRO_CARD(0x02) PRO card.

S50_PRO_CARD(0x03) S50 MIFARE PRO card.

S70_PRO_CARD(0x04) S70 MIFARE PRO card.

CPU_CARD(0x05) CPU card (contactless card).

Return Values

void

onFail()

This method is called when an error occurs during the card search process.

Prototype

void com.vfi.smartpos.deviceservice.aidl.RFSearchListener.onFail (int error,

String message)

Parameters

error An integer representing the error code, which provides specific details about
the failure that occurred. Possible error codes include:

 Programmers Guide Girgit

 390
 © Verifone Inc. All rights reserved.

 ERROR_TRANSERR(0xA2) Error during transaction, such
as communication failure.

ERROR_PROTERR(0xA3) The response from the card
is illegal.

ERROR_MULTIERR(0x84) Multiple cards were found.

ERROR_CARDTIMEOUT(0xA7) The card timeout.

ERROR_CARDNOACT(0xB3) The card (PRO, type B) is not
active.

ERROR_MCSERVICE_CRASH(0xff01) The master service has
crashed.

ERROR_REQUEST_EXCEPTION(0xff02) An exception occurred during
the request.

message A description of the error.

Return Values

void

10. TusnData
Package: com.vfi.smartpos.deviceservice.aidl.TusnData

Overview:

This class represents a data structure that stores terminal information, including its type, MAC address,
and a unique serial number.

Inheritance diagram:

 Programmers Guide Girgit

 391
 © Verifone Inc. All rights reserved.

NOTE
TusnData is a java class and is called using the constructor
TusnData(Parcel source).

Constructor:

TusnData(Parcel source)

This constructor initializes a TusnData object from a given Parcel source.

Parameters

source A Parcel object from which the TusnData is read and constructed.

Public Member Functions:

Modifier and Type Method

void setTerminalType (int type)

void setMac (String mac)

void setTusn (String tusn)

String getMac ()

 Programmers Guide Girgit

 392
 © Verifone Inc. All rights reserved.

String getTusn ()

int getTerminalType ()

Member Function Documentation:

setTerminalType()

This method sets the type of the terminal.

Prototype

void com.vfi.smartpos.deviceservice.aidl.TusnData.setTerminalType (int type)

Parameters

type An integer representing the type of terminal.

Return Values

void

setMac()

This method sets the MAC address for the terminal.

Prototype

void com.vfi.smartpos.deviceservice.aidl.TusnData.setMac (String mac)

Parameters

mac A string representing the MAC address of the terminal.

 Programmers Guide Girgit

 393
 © Verifone Inc. All rights reserved.

Return Values

void

setTusn()

This method sets a unique serial number for the terminal.

Prototype

void com.vfi.smartpos.deviceservice.aidl.TusnData.setTusn (String tusn)

Parameters

tusn A string representing the unique terminal serial number or identifier.

Return Values

void

getMac()

This method retrieves the MAC address associated with the terminal.

Prototype

String com.vfi.smartpos.deviceservice.aidl.TusnData.getMac ()

Parameters

None.

Return Values

 Programmers Guide Girgit

 394
 © Verifone Inc. All rights reserved.

The MAC address as a string.

getTusn()

This method retrieves the unique terminal serial number (Tusn).

Prototype

String com.vfi.smartpos.deviceservice.aidl.TusnData.getTusn ()

Parameters

None.

Return Values

The Tusn value as a string.

getTerminalType()

This method retrieves the type of the terminal as previously set.

Prototype

int com.vfi.smartpos.deviceservice.aidl.TusnData.getTerminalType ()

Parameters

None.

Return Values

An integer representing the terminal type.

 Programmers Guide Girgit

 395
 © Verifone Inc. All rights reserved.

11. SerialDataControl
Package: com.vfi.smartpos.deviceservice.aidl.SerialDataControl

Overview:

This class acts as a configuration entity for establishing serial communication settings on the devices. It
encapsulates critical parameters like baud rate, data bits, stop bits, and parity, providing a structured
approach to manage serial data transmission settings.

Inheritance diagram:

NOTE
SerialDataControl is a java class and is called using the constructor
SerialDataControl (int baudRate, int dataBits, int stopBits,

int serialParity)

Constructor:

SerialDataControl (int baudRate, int dataBits, int stopBits, int serialParity)

This constructor initializes the SerialDataControl object with the specified serial
communication parameters. The parameters are crucial for configuring serial
communication correctly.

Parameters

baudRate The baud rate determines the speed at which data is transmitted over
the serial connection.

dataBits The number of data bits per frame.

 Programmers Guide Girgit

 396
 © Verifone Inc. All rights reserved.

stopBits The number of stop bits used to signal the end of a data frame.

serialParity The parity bit used for error checking.

Public Member Functions:

Modifier and Type Method

int getBaudRate ()

int getDataBits ()

int getStopBits ()

int getSerialParity ()

Member Function Documentation:

getBaudRate()

This method retrieves the baud rate of the serial communication, which defines the speed
at which the data is transmitted.

Prototype

int com.vfi.smartpos.deviceservice.aidl.SerialDataControl.getBaudRate ()

Parameters

None.

Return Values

The baud rate as an integer.

 Programmers Guide Girgit

 397
 © Verifone Inc. All rights reserved.

getDataBits()

This method retrieves the number of data bits per frame used in the serial data
communication.

Prototype

int com.vfi.smartpos.deviceservice.aidl.SerialDataControl.getDataBits ()

Parameters

None.

Return Values

The number of data bits as an integer.

getStopBits()

This method retrieves the number of stop bits used to signal the end of a data frame in the
serial data communication.

Prototype

int com.vfi.smartpos.deviceservice.aidl.SerialDataControl.getStopBits ()

Parameters

None.

Return Values

The stop bits setting as an integer.

 Programmers Guide Girgit

 398
 © Verifone Inc. All rights reserved.

getSerialParity()

This method retrieves the parity setting used for error checking in the serial
communication.

Prototype

int com.vfi.smartpos.deviceservice.aidl.SerialDataControl.getSerialParity ()

Parameters

None.

Return Values

The parity configuration as an integer.

12. ISerialPort
Package: com.vfi.smartpos.deviceservice.aidl.ISerialPort

Overview:

This interface is used for inter-process communication (IPC). It defines methods for managing and
interacting with serial ports effectively. It allows applications to open, configure, read from, and write to
serial ports, enabling seamless communication with peripherals.

Public Member Functions:

Modifier and Type Method

boolean open ()

boolean close ()

file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_i_serial_port.html%23a4031383bc96a6fca86ccf96044c86057
file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_i_serial_port.html%23a79e6fb470698c6e5ff1294a9d4519b15

 Programmers Guide Girgit

 399
 © Verifone Inc. All rights reserved.

boolean init (int bps, int par, int dbs)

int read (inout byte[] buffer, int expectLen, int timeout)

int write (in byte[] data, int timeout)

boolean clearInputBuffer ()

boolean isBufferEmpty (boolean input)

Member Function Documentation:

open()

This method opens the serial port, establishing a communication channel with the
connected device.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.ISerialPort.open ()

Parameters

None.

Return Values

A Boolean value:

true: If the port was successfully opened.

false: If the port opening failed.

See Also

file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_i_serial_port.html%23a724681372bf87df926f8e0b5bfcbacc2
file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_i_serial_port.html%23a484581782d7f5bf629d888f06a1582ad
file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_i_serial_port.html%23a8e19e8a801d3af05ae08782a066cf82e
file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_i_serial_port.html%23a39ecdf66d6397c9a9940022b12ff2ea6
file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_i_serial_port.html%23a63dd35e61a1d2e03fd41cf14ac89da3f

 Programmers Guide Girgit

 400
 © Verifone Inc. All rights reserved.

close()

close()

This method closes the currently opened serial port.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.ISerialPort.close ()

Parameters

None.

Return Values

A Boolean value:

true: If the port was successfully closed.

false: If the port closing failed.

See Also

open()

init()

This method initializes the serial port with the given parameters.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.init (int bps, int par, int dbs)

Parameters

 Programmers Guide Girgit

 401
 © Verifone Inc. All rights reserved.

bps Baud rate (bits per second), which defines the speed of data transmission
over the serial port. Supported values:

 1200 bps.

2400 bps.

4800 bps.

9600 bps.

14400 bps.

19200 bps.

28800 bps.

38400 bps.

57600 bps.

115200 bps.

par Parity setting for the data transmission. The available parity settings are:

 0 No parity checks.

1 Odd parity.

2 Even parity.

dbs The number of data bits used in each byte of transmission.

Return Values

A Boolean value:

true: If initialization succeeded.

false: If initialization failed.

 Programmers Guide Girgit

 402
 © Verifone Inc. All rights reserved.

See Also

open()

read()

This method is used to read data from a device and store it in a provided buffer.

Prototype

int com.vfi.smartpos.deviceservice.aidl.read (inout byte[] buffer, int

expectLen, int timeout)

Parameters

buffer The byte array to store the incoming data.

expectLen The expected length of the data to be read.

timeout The timeout duration in milliseconds.

Return Values

Either of the following values:

Positive integer: The length of data successfully read and stored in the buffer.

-1: If the operation fails.

See Also

write()

write()

This method is used to write data to the serial port.

 Programmers Guide Girgit

 403
 © Verifone Inc. All rights reserved.

Prototype

int com.vfi.smartpos.deviceservice.aidl.write (in byte[] data, int timeout)

Parameters

data The byte array containing data to be sent.

timeout The timeout duration in milliseconds.

Return Values

Either of the following values:

Positive integer: The length of data successfully written.

-1: If the operation fails.

See Also

read()

clearInputBuffer()

This method clears the input buffer of the serial port.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.ISerialPort.clearInputBuffer()

Parameters

None.

Return Values

 Programmers Guide Girgit

 404
 © Verifone Inc. All rights reserved.

A Boolean value:

true: The input buffer was successfully cleared.

false: Failed to clear the input buffer.

isBufferEmpty()

This method checks whether a specified buffer (input or output) is empty.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.ISerialPort.isBufferEmpty (boolean

input)

Parameters

input Indicates whether to check the input buffer.

 true: Check the input buffer (used for reading data).

false: Check the output buffer (used for writing data).

Return Values

A Boolean value:

true: Data is available in the specified buffer.

false: No data is available in the specified buffer.

13. IUsbSerialPort
Package: com.vfi.smartpos.deviceservice.aidl.IUsbSerialPort

Overview:

 Programmers Guide Girgit

 405
 © Verifone Inc. All rights reserved.

This class provides an interface for interacting with USB serial ports in the device service. It allows
communication with serial devices over USB, facilitating read, write, and buffer management operations
for data transfer.

Public Member Functions:

Modifier and Type Method

boolean isUsbSerialConnect ()

int read (inout byte[] buffer, int timeout)

void write (in byte[] data)

Member Function Documentation:

isUsbSerialConnect()

T This method checks whether a USB-serial device is currently connected to the system
via an OTG cable.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IUsbSerialPort.isUsbSerialConnect ()

Parameters

None.

Return Values

A Boolean value:

true: If a USB-serial device is available and connected.

false: If no USB-serial device is available or connected.

 Programmers Guide Girgit

 406
 © Verifone Inc. All rights reserved.

read()

This method is used to read data from the USB serial device into a provided buffer.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IUsbSerialPort.read (inout byte[]

buffer, int timeout)

Parameters

buffer A byte array to store the data read from the USB-serial device.

timeout The timeout duration in milliseconds.

Return Values

Either of the following values:

Positive integer: The length of data successfully read and stored in the buffer.

-1: If the operation fails.

See Also

write()

write()

This method sends data to the connected USB-serial device. It writes the contents of the
provided data buffer to the device.

Prototype

 Programmers Guide Girgit

 407
 © Verifone Inc. All rights reserved.

void com.vfi.smartpos.deviceservice.aidl.IUsbSerialPort.write (in byte[] data)

Parameters

data A byte array containing the data to be sent to the USB-serial device.

Return Values

void

See Also

read()

14. IRFCardReader
Package: com.vfi.smartpos.deviceservice.aidl.IRFCardReader

Overview:

This interface is used for interacting with various types of contactless cards, such as MIFARE, Memory,
and CPU cards. It defines a set of methods that allow for the initialization, authentication, and
communication with these cards.

Public Member Functions:

Modifier and Type Method

void searchCard (RFSearchListener listener, int timeout)

void stopSearch ()

int activate (String driver, out byte[] responseData)

 Programmers Guide Girgit

 408
 © Verifone Inc. All rights reserved.

void halt ()

boolean isExist ()

byte[] exchangeApdu (in byte[] apdu)

byte[] cardReset ()

int authBlock (int blockNo, int keyType, in byte[] key)

int authSector (int sectorNo, int keyType, in byte[] key)

int readBlock (int blockNo, out byte[] data)

int writeBlock (int blockNo, in byte[] data)

int increaseValue (int blockNo, int value)

int decreaseValue (int blockNo, int value)

Bundle getCardInfo ()

byte restore (byte blockNo)

byte transfer (byte blockNo)

void CloseRfField ()

 Programmers Guide Girgit

 409
 © Verifone Inc. All rights reserved.

Member Function Documentation:

searchCard()

This method is used to search for an RFID card within range. The device will attempt to
detect a card within the given timeout period.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IRFCardReader.searchCard

(RFSearchListener listener, int timeout)

Parameters

listener The callback listener that will handle the result of the card search.

timeout Timeout duration in milliseconds. This should be >= 1 millisecond.

Return Values

void

See Also

• Refer to stopSearch()

• Refer to RFSearchListener under Appendix A.

file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_i_r_f_card_reader.html%23a434c0dd4b8833a5e70a4ff2a39ba82ea
file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_r_f_search_listener.html

 Programmers Guide Girgit

 410
 © Verifone Inc. All rights reserved.

stopSearch()

This method is used to stop an ongoing search for an RFID card.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IRFCardReader.stopSearch ()

Parameters

None.

Return Values

void

activate()

This method is used to activate an RFID card. It initiates communication with the card and
retrieves a response to confirm its activation.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IRFCardReader.activate (String driver,

out byte[] responseData)

Parameters

driver The driver’s name corresponding to the type of card. It includes:

 S50 Represents S50 (M1) cards.

S70 Represents S70 (M1) cards.

CPU Represents CUP cards.

PRO Represents PRO cards e.g., S50_PRO, S70_PRO.

 Programmers Guide Girgit

 411
 © Verifone Inc. All rights reserved.

responseData An output parameter that stores the response data from the card.

Return Values

Either of the following values:

0: Success. The card was successfully activated.

Non-zero value: Failure. If the return value is not 0, it indicates an error during the
activation process.

halt()

This method is used to halt the operation of the card reader.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IRFCardReader.halt ()

Parameters

None.

Return Values

void

See Also

stopSearch()

isExist()

This method is used to check whether an RFID card is currently detected or available.

file:///C:/Users/ZeelanN/Downloads/doc/html/interfacecom_1_1vfi_1_1smartpos_1_1deviceservice_1_1aidl_1_1_i_r_f_card_reader.html%23a434c0dd4b8833a5e70a4ff2a39ba82ea

 Programmers Guide Girgit

 412
 © Verifone Inc. All rights reserved.

Prototype

boolean com.vfi.smartpos.deviceservice.aidl.IRFCardReader.isExist ()

Parameters

None.

Return Values

A Boolean value:

true: This indicates that an RFID card is currently detected.

false: This indicates that no RFID card is detected.

exchangeApdu()

This method is used to send an APDU command to an RFID card and receive the response
from the card.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IRFCardReader.exchangeApdu (in

byte[]apdu)

Parameters

apdu The APDU command that will be sent to the RFID card.

Return Values

A byte array that contains the card’s APDU response data.

 Programmers Guide Girgit

 413
 © Verifone Inc. All rights reserved.

cardReset()

This method is used to reset an RFID card.

Prototype

byte[] com.vfi.smartpos.deviceservice.aidl.IRFCardReader.cardReset ()

Parameters

None.

Return Values

A byte array that contains the response from the card after the reset operation.

authBlock()

This method is used to authenticate a specific block on the RFID card. This is part of the
process for accessing or modifying data stored in that block.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IRFCardReader.authBlock (int blockNo,

int keyType, in byte[] key)

Parameters

blockNo The block number (index) on the RFID card to authenticate. The block
number starts at 0 (first block).

keyType The type of key used for authentication.

 KEY_A (0) Authentication using key A.

KEY_B (1) Authentication using key B.

 Programmers Guide Girgit

 414
 © Verifone Inc. All rights reserved.

key A 6-length key used for the authentication process.

Return Values

Either of the following values:

0: Success. The authentication of the block was successful.

Non-zero value: Failure if the return value is not 0.

See Also

authSector()

authSector()

This method is used to authenticate a sector on a smart card, when interacting with a
contactless smart card reader.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IRFCardReader.authSector (int sectorNo,

int keyType, in byte[] key)

Parameters

sectorNo This is the sector number starting from 0 that user want to authenticate.

keyType The type of key used for authentication.

 KEY_A (0) Authentication using key A.

KEY_B (1) Authentication using key B.

key The key is used for authentication. The length of the key should be exactly
6 bytes.

 Programmers Guide Girgit

 415
 © Verifone Inc. All rights reserved.

Return Values

Either of the following values:

0: Success. The authentication of the sector was successful.

Non-zero value: Failure. An error occurred during the authentication process.

See Also

authBlock()

readBlock()

This method is used to read data from a specific block on a smart card.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IRFCardReader.readBlock (int blockNo,

out byte[] data)

Parameters

blockNo This is the block number starting from 0 that the user wants to read from.

data This is an output parameter that will hold the data read from the specified
block. The length of the array will be 16 bytes.

Return Values

Either of the following values:

0: Success. The block was successfully read.

Non-zero value: An error occurred while reading the block.

See Also

 Programmers Guide Girgit

 416
 © Verifone Inc. All rights reserved.

writeBlock()

writeBlock()

This method is used to write data to a specific block on a smart card.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IRFCardReader.writeBlock (int blockNo,

in byte[] data)

Parameters

blockNo The block number on the smart card where data should be written. The
numbering starts from 0.

data This is the source data that will be written to the specified block. The
array must contain exactly 16 bytes of data, as each block on the card is
16 bytes long. If the data array has a length different from 16, the method
will result in an error.

Return Values

Either of the following values:

0: Success. The block was successfully written with the provided data.

Non-zero value: Failure. An error occurred during the write operation.

See Also

readBlock()

 Programmers Guide Girgit

 417
 © Verifone Inc. All rights reserved.

increaseValue()

This method is used to increase the value stored on a specific block in a smart card.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IRFCardReader.increaseValue (int

blockNo, int value)

Parameters

blockNo The block number on the card or device where the value should be
increased.

value Indicates the amount by which the value at the specified block should be
increased.

Return Values

Either of the following values:

0: Indicates success.

Non-zero value: Indicates Failure.

See Also

decreaseValue()

decreaseValue()

This method is used to decrease the value stored on a specific block in a smart card.

Prototype

int com.vfi.smartpos.deviceservice.aidl.IRFCardReader.decreaseValue (int

blockNo, int value)

 Programmers Guide Girgit

 418
 © Verifone Inc. All rights reserved.

Parameters

blockNo The block number on the card or device where the value should be
decreased.

value Indicates the amount by which the value at the specified block should be
decreased.

Return Values

Either of the following values:

0: Indicates success.

Non-zero value: Indicates Failure.

See Also

increaseValue()

getCardInfo()

This method is used to retrieve the card information during the
RFSearchListener.onCardPass callback function, which is triggered when a card is
detected by an RFID.

Prototype

Bundle com.vfi.smartpos.deviceservice.aidl.IRFCardReader.getCardInfo ()

Parameters

None.

Return Values

A Bundle object containing card information. The SN of the card is returned as a ByteArray.

 Programmers Guide Girgit

 419
 © Verifone Inc. All rights reserved.

See Also

Refer to RFSearchListener.onCardPass() under Appendix A.

restore()

This method is used to restore or reset a specific block on a smart card or RFID card,
identified by its block number.

Prototype

byte com.vfi.smartpos.deviceservice.aidl.IRFCardReader.restore (byte blockNo)

Parameters

blockNo The block number on the card that user wants to restore.

Return Values

A byte value that indicates the result of the restore operation.

0x00: Success: The block was successfully restored.

0x01: BlockNo error: There was an issue with the specified block number.

0x02: Operation failed: The restore operation failed due to an unknown issue
with the operation.

0xff: Other error: A generic error occurred during the restore process, indicating
an issue not covered by the previous return codes.

 Programmers Guide Girgit

 420
 © Verifone Inc. All rights reserved.

transfer()

This method is used to transfer an operation on a specific block on a smart card or
RFID card, identified by its block number.

Prototype

byte com.vfi.smartpos.deviceservice.aidl.IRFCardReader.transfer (byte

blockNo)

Parameters

blockNo The block number on the card that user wants to transfer.

Return Values

A byte value that indicates the result of the operation:

0x00: Success: The transfer operation was successful.

0x01: BlockNo error: There was an issue with the specified block number.

0x02: Operation failed: The transfer operation failed for an unspecified reason.

0xff: Other error: A generic error occurred during the transfer process, which
does not fall under the other error categories.

CloseRfField()

This method is used to close or deactivate the RF field on a smart card reader.

Prototype

void com.vfi.smartpos.deviceservice.aidl.IRFCardReader.CloseRfField ()

Parameters

 Programmers Guide Girgit

 421
 © Verifone Inc. All rights reserved.

None.

Return Values

void

15. PinKeyCoorInfo
Package: com.vfi.smartpos.deviceservice.aidl.PinKeyCoorInfo

Overview:

This class is created to manage data related to the physical key presses or coordinates on a keypad
during PIN entry. It is primarily used in secure environments where PIN entry and validation are critical for
ensuring transaction security.

Inheritance diagram:

NOTE
PinKeyCoorInfo is a java class and is called using the constructor
PinKeyCoorInfo (String keyName, int coor1_x, int coor1_y,

int coor2_x, int coor2_y, int keyType).

Constructor:

PinKeyCoorInfo (String keyName, int coor1_x, int coor1_y, int coor2_x, int coor2_y,
Int keyType)

This constructor initializes the PinKeyCoorInfo object with details related to a specific key
on a keypad, such as its name, coordinates, and type.

 Programmers Guide Girgit

 422
 © Verifone Inc. All rights reserved.

Parameters

keyName Represents the name or label of the key on the keypad.

 coor1_x The x-coordinate of the first point that defines the
key's position on the keypad.

coor1_y The y-coordinate of the first point that defines the
key's position.

coor2_x The x-coordinate of the second point that defines the
key's boundary.

coor2_y The y-coordinate of the second point that defines the
key's boundary.

keyType Specifies the type of the key. The possible values are:

 0-TypeNum A numeric key.

1-TypeConf A confirmation key.

2-TypeCancel A cancel key.

3-TypeDel A delete key.

Public Member Functions:

Modifier and Type Method

String getKeyName ()

int[] getCoor1 ()

int[] getCoor2 ()

 Programmers Guide Girgit

 423
 © Verifone Inc. All rights reserved.

int getKeyType ()

Member Function Documentation:

getKeyName()

This method retrieves the name or label of the key.

Prototype

String com.vfi.smartpos.deviceservice.aidl.PinKeyCoorInfo.getKeyName ()

Parameters

None.

Return Values

A string representing the name of the key.

getCoor1()

This method retrieves the first pair of coordinates that define the key's position.

Prototype

int[] com.vfi.smartpos.deviceservice.aidl.PinKeyCoorInfo.getCoor1 ()

Parameters

None.

Return Values

An array of integers representing the first set of coordinates of the key.

 Programmers Guide Girgit

 424
 © Verifone Inc. All rights reserved.

getCoor2()

This method retrieves the second pair of coordinates that define the key's position.

Prototype

int[] com.vfi.smartpos.deviceservice.aidl.PinKeyCoorInfo.getCoor2 ()

Parameters

None.

Return Values

An array of integers representing the second set of coordinates of the key.

getKeyType()

This method returns the type of the key, such as a numeric key (0), a confirmation key (1), a
cancel key (2), or a delete key (3).

Prototype

int com.vfi.smartpos.deviceservice.aidl.PinKeyCoorInfo.getKeyType ()

Parameters

None.

Return Values

An integer representing the key type.

 Programmers Guide Girgit

 425
 © Verifone Inc. All rights reserved.

16. PinpadKeyType
Package: com.vfi.smartpos.deviceservice.aidl.PinpadKeyType

Overview:

This class is essential for mapping the physical keys on a terminal’s Pinpad to recognizable constants in
the software, ensuring that the terminal correctly processes user inputs during financial transactions.

Static Public Attributes:

The following table lists Modifier and Type, Field Name, Value, Description, and Field Detail:

Modifier and

Type

Field Name Value Description Field Detail

static final int MASTERKEY 0 Represents the master key used for

encryption.

public static final

int MASTERKEY

static final int MACKEY 1 Represents the MAC (Message

Authentication Code) key.

public static final

int MACKEY

static final int PINKEY 2 Represents the key used for

encrypting PINs.

public static final

int PINKEY

static final int TDKEY 3 Represents the key for Transaction

Data encryption.

public static final

int TDKEY

static final int SM_MASTERKEY 4 Represents the master key for the

SM (Secure Module).

public static

final int

SM_MASTERKEY

static final int SM_MACKEY 5 Represents the MAC key for the

SM.

public static

final int

SM_MACKEY

 Programmers Guide Girgit

 426
 © Verifone Inc. All rights reserved.

static final int SM_PINKEY 6 Represents the PIN key for the SM.
public static

final int

SM_PINKEY

static final int SM_TDKEY 7 Represents the transaction data

key for the SM.

public static

final int SM_TDKEY

static final int AES_MASTERKEY 8 Represents the AES (Advanced

Encryption Standard) master key.

public static

final int

AES_MASTERKEY

static final int AES_MACKEY 9 Represents the AES MAC key.
public static

final int

AES_MACKEY

static final int AES_PINKEY 10 Represents the AES key used for

PIN encryption.

public static

final int

AES_PINKEY

static final int AES_TDKEY 11 Represents the AES key used for

transaction data encryption.

public static

final int

AES_TDKEY

static final int DUKPTKEY 12 Represents the DUKPT key.
public static

final int DUKPTKEY

static final int TEK 13 Represents the TEK (Transaction

Encryption Key).

public static

final int TEK

static final int SM_TEK 14 Represents the TEK for the SM.
public static

final int SM_TEK

static final int AES_TEK 15 Represents the AES TEK.
public static

final int AES_TEK

 Programmers Guide Girgit

 427
 © Verifone Inc. All rights reserved.

17. QrCodeContent
Package: com.vfi.smartpos.deviceservice.aidl.QrCodeContent

Overview:

This class serves as the container for the data that is encoded in a QR code, which is used in various
financial and transaction-related processes in POS systems. It could store information such as the
transaction amount, merchant ID, and payment method, allowing for secure and efficient interactions
between customers and merchants.

Inheritance diagram:

NOTE
QrCodeContent is a java class and is called using the constructor
QrCodeContent (Parcel in).

Constructor:

QrCodeContent (int height, int leftOffset, String barcode)

This is the constructor for the QrCodeContent class. It initializes a new QrCodeContent
object with the given height, left offset, and barcode string.

Prototype

void com.vfi.smartpos.deviceservice.aidl.QrCodeContent.QrCodeContent (int

height, int leftOffset, String barcode)

Parameters

height The height of the QR code.

 Programmers Guide Girgit

 428
 © Verifone Inc. All rights reserved.

leftOffset The left offset for positioning the QR code.

barcode The content of the barcode.

Public Member Functions:

Modifier and Type Method

int getHeight ()

void setHeight (int height)

int getLeftOffset ()

void setLeftOffset (int leftOffset)

String getBarcode ()

void QrCodeContent (int height, int leftOffset, String barcode)

Member Function Documentation:

getHeight()

This method returns the height of the QR code.

Prototype

int com.vfi.smartpos.deviceservice.aidl.QrCodeContent.getHeight ()

Parameters

 Programmers Guide Girgit

 429
 © Verifone Inc. All rights reserved.

None.

Return Values

An integer representing the height of the QR code.

setHeight()

This method allows the user to set the height of the QR code.

Prototype

void com.vfi.smartpos.deviceservice.aidl.QrCodeContent.setHeight (int height)

Parameters

height The height to set for the QR code.

Return Values

void

getLeftOffset()

This method returns the left offset for positioning the QR code.

Prototype

int com.vfi.smartpos.deviceservice.aidl.QrCodeContent.getLeftOffset ()

Parameters

None.

Return Values

 Programmers Guide Girgit

 430
 © Verifone Inc. All rights reserved.

An integer representing the left offset in the same unit as the height.

setLeftOffset()

This method sets the left offset for the QR code.

Prototype

void com.vfi.smartpos.deviceservice.aidl.QrCodeContent.setLeftOffset (int

leftOffset)

Parameters

leftOffset The value representing the left offset.

Return Values

void

getBarcode()

This method retrieves the barcode of the QR code as a String.

Prototype

String com.vfi.smartpos.deviceservice.aidl.QrCodeContent.getBarcode ()

Parameters

None.

Return Values

A String representing the barcode content encoded in the QR code.

Verifone

University Drive
Coral Springs,

FL 33065, USA
Fax: 4545 233

Phone: 001 454 2333

www.verifone.com

Thank you!

We are the payments architects who
truly understand commerce.

As payment architects we shape ecosystems for online and
in-person commerce experiences, including all the tools you
need… from gateways and acquiring to fraud management,
tokenization and reporting.

As commerce experts, we are here for you and your business.
With our payment devices, our systems & solutions and our
support. Everywhere. Anytime. So that your customers feel
enabled, recognized and well taken care of, even beyond their
expectations.

Verifone. Creating omni-commerce solutions that simply
shape powerful customer experiences.

