
https://verifone.cloud/docs/online-payments/api-integration/server-server-payments-3d-secure-setup-
guide/server-server
Updated: 13-Jun-2025

Server-to-Server Payments with 3D Secure

Step 1: (Client-side) Set up your front-end?

Set up your front-end to include the .JS scripts for card encryption and Cardinal Commerce (3DS):

Card encryption: https://cst.jsclient.vficloud.net/verifone.js?

3DS:

PROD: https://songbird.cardinalcommerce.com/edge/v1/songbird.js
TEST: https://songbirdstag.cardinalcommerce.com/edge/v1/songbird.js

 
Throughout the documentation we are using the CST environment. Use the appropriate environment for your
account. See more in Getting started.

HTML Example:

<head>?? 
<script src="https://cst.jsclient.vficloud.net/verifone.js"></script>?? 
<script src= 
"https://songbirdstag.cardinalcommerce.com/edge/v1/songbird.js"></script>??
 
</head>? 

Step 2: (Server-side) Collect a JWT Token

API Reference: https://verifone.cloud/api-catalog/3d-secure-api#tag/V2/operation/postV2JwtCreate

Make a Post request using your 3D Secure Contract ID to collect a JWT token. This is used later for initializing
the 3D Secure script client side.

Request Method: POST?

URL: https://cst.test-gsc.vfims.com/oidc/3ds-service/v2/jwt/create

Body:

/docs/online-payments/api-integration/server-server-payments-3d-secure-setup-guide/server-server
/docs/online-payments/api-integration/server-server-payments-3d-secure-setup-guide/server-server
https://cst.jsclient.vficloud.net/verifone.js
https://songbird.cardinalcommerce.com/edge/v1/songbird.js
https://songbirdstag.cardinalcommerce.com/edge/v1/songbird.js
https://verifone.cloud/docs/online-payments/getting-started
https://verifone.cloud/api-catalog/3d-secure-api#tag/V2/operation/postV2JwtCreate
https://cst.test-gsc.vfims.com/oidc/3ds-service/v2/jwt/create


{
"threeds_contract_id":"{Your 3D-Secure Contract ID}"?? 
}??

Response:

{???? 
??? "threeds_contract_id": " {Your 3D-Secure Contract ID}",???? 
??? "jwt": 
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJqdGkiOiIzNjUzMTU0Yy1jNzczLTRhNjAtYWNkMi04MTc5YmJmNjllMjMiLCJpc3MiOiI1ZDEyMmU1OGMxYjQxMjI5M2MwYTUwZDIiLCJPcmdVbml0SWQiOiI1ZDExMmJjMWJiODc2ODIyNDBmOGRjMGQiLCJQYXlsb2FkIjp7fSwiaWF0IjoxNzA4Mzg5ODA2fQ.L1o-KrhFT6HqX5FbKEpC3CU5sDB4oA3yYRXzog0gAv1"
??? 
}? 

 
The JWT will expire after 2 hours and it is a single time use only.

?Pass the JWT token to your front-end for later use.

Step 3: (Client-Side) Initiate your Card Form?

Once you have a JWT token, you should generate your card collection form/page to begin the 3D Secure
assessment and allow the customer to enter their credit card details at the same time.

Step 4: (Client-side) Configure the 3D Secure Script

Run the Cardinal.configure() function with your desired configuration options. For example:

Cardinal.configure({ 
    timeout: 6000, 
    maxRequestRetries: 3, 
    logging:{ 
        level: 'verbose' 
    } 
}); 

Root Level Object
Logging Object
Button Object
Payment Object

 
Field Type Default Description

timeout int 8000
The time in milliseconds to wait before a request to Centinel API is
considered a timeout.



Field Type Default Description

extendedTimeout int  

extendedTimeout is only used in the event of the first request timing out.
This configuration allows the merchant to set the timeout (in milliseconds)
for subsequent retry attempts.
(This configuration would be useful when the merchant wants to set higher
timeout values on requests).
If the value for the extendedTimeout is set to less than 4000 milliseconds,
then the value will be automatically reset to 4000 milliseconds.

maxRequestRetries int 1 How many times a request should be retried before giving up as a failure.
 
Field Type Default Description

level string off

The level of logging to the browser console. Enable this feature to help debug and
implement Songbird.
Possible Values:

off - No logging to console enabled. This is the setting to use for production systems.
on - Similar to info level logging, this value will provide some information about
whats occurring during a transaction. This is recommended setting for merchants
implementing Songbird.
verbose - All logs are output to console. This method can be thought of as debug
level logging and will be very loud when implementing Songbird, but is the level
needed when getting support from the Cardinal team.

 
Field Type Default Description

containerId string Cardinal-Payments The HTML Id value of the container to inject all payment buttons into.
 

Field Type Default Description

view string modal

What type of UI experience to use when Songbird injects payment brand
UI elements into the page.
Possible Values:

modal - Render as a modal window. This view type renders the
payment brand over your page, making it feel separate from your
page.



Field Type Default Description

framework string Cardinal

What kind of view framework should be used to render the payment brand.
If your site is using a supported framework and you have custom styles
applied to it, we will use that framework to make keep the consistent look
and feel of your site. When using any other frameworks than 'cardinal' your
site is responsible for including the framework assets including CSS,
JavaScript, and any other additional files needed.
Possible Values:

cardinal - Use the custom Cardinal view framework built and
maintained by CardinalCommerce. Songbird will handle all UI
rendering and styles, no additional work is needed.
inline - Render inline to the page. This view type embeds the
payment brand into the page making it feel like it's a part of your
website. View the guide for implementation here: Inline Display
Method for 3D Secure
bootstrap3 - Use bootstrap 3 modal to render the UI elements.
Please note that you are responsible for importing any necessary files
for that framework.

displayLoading boolean false

A flag to enable / disable a loading screen while requests are being made to
3DS Server API services. This can provide feedback to the end user that
processing is taking place and they should not try to reload the page, or
navigate away.
Possible Values:

false - Disables the loading screen
true – Enables the loading screen

displayExitButton boolean false

Will display an X icon in the corner of the modal window to allow for end
users to close the authentication modal without completing it. Clicking the
close button will result in the payments.validated event to be triggered with
a “10011 error, Canceled by user".
Possible Values:

false - Disables the exit icon on the modal
true - Enables the exit icon on the modal

Step 5: (Client-side) Setup Event Listeners

payments.setupComplete()? 

This listener will run after the payment setup has successfully been completed. SetupCompleteData will contain
a session ID to be used for the 3DS lookup.?

https://verifone.cloud/docs/online-payments/strong-customer-authentication-sca/server-server-payments-3d-secure-setup-2
https://verifone.cloud/docs/online-payments/strong-customer-authentication-sca/server-server-payments-3d-secure-setup-2


Cardinal.on('payments.setupComplete', function(setupCompleteData){?? 
// pass setupCompleteData.sessionId server side to make the lookup API call 

});? 

payments.validated()

Payments Validated allows you to capture the different outcomes of the flow and handle them accordingly.?

Cardinal.on("payments.validated", function (data, jwt) {?? 
??? switch(data.ActionCode){?? 
????? case "SUCCESS":?? 
????? // Handle successful transaction, send JWT to backend to verify?? 
????? break;?? 
 
????? case "NOACTION":?? 
????? // Handle no actionable outcome?? 
????? break;?? 
????? case "FAILURE":?? 
????? // Handle failed transaction attempt?? 
????? break;?? 
??????? 
????? case "ERROR":?? 
????? // Handle service level error?? 
????? break;?? 
? }?? 
});? 

Response Data and Outcome definitions

Type Description

ActionCode

The resulting state of the transaction.
Possible values:

SUCCESS - The authentication was successful. Details from the “Payment” Object can
be used to perform a payment.
NOACTION - The API calls were completed and there is no further actionable items to
complete. This can indicate that the card holder is not enrolled in 3D Secure or it could
indicate a validation error was encountered. It is recommended that the rest of the
response is reviewed to determine what has occurred.
FAILURE - The authentication resulted in an error. For example, this would indicate
that the user failed authentication or an error was encountered while processing the
transaction.
ERROR - A service level error was encountered. These are generally reserved for
connectivity or API authentication issues. For example, if your JWT was from the
wrong environment, or 3DS services are unavailable.

Validated This value represents whether the authentication was successful or not.

ErrorNumber
Application error number. A non-zero value represents the error encountered while attempting
the process the message request.



Type Description
ErrorDescription Application error description for the associated error number.

Payment Payment Object, see below for details.

In the case of a SUCCESS outcome, the details returned from data.Payment.ExtendedData are used for payment
in Step 12.

Example for SUCCESS outcome:

{ 
    "Type": "CCA", 
    "ExtendedData": { 
        "Amount": "1000", 
        "AuthorizationPayload": 
"eyJjb250YWluZXJWZXJzaW9uIjoiMSIsImVjaSI6IjA1IiwiYXV0aGVudGljYXRpb25WYWx1ZSI6IkFBSUJCWU5vRXdBQUFDY0toQUprZFFBQUFBQT0iLCJlZmZlY3RpdmVBdXRoVHlwZSI6IkNIIiwiYWNzT3BlcmF0b3JJRCI6Ik1lcmNoYW50QUNTIiwidGhyZWVEU1JlcXVlc3RvckNoYWxsZW5nZUluZCI6IjAxIiwidHJhbnNTdGF0dXMiOiJZIiwiZHNUcmFuc0lEIjoiYTl4OTNiNzAtOGIyMS00MTI4LWExNzctZjRhNDM0YzAwOWZjIiwiYWNzVHJhbnNJRCI6IjhiYWFhZTMwLWFjY2EtNDYyZC04NzY3LWM0NDdlMWEwYmUwMCIsIm1lc3NhZ2VWZXJzaW9uIjoiMi4yLjAiLCJtZXJjaGFudE5hbWUiOiJWZXJpRm9uZSIsInB1cmNoYXNlRGF0ZSI6IjIwMjQwNTEyMjMyMTExIiwicHVyY2hhc4VBbW91bnQiOiIxMDAwIiwiYnJvd3NlcklQIjoiMjQwMTo3MDAwOmNiMDQ6ZmUwMDpiNTFjOjY2M2U6ZmM0ZDoxNGM5IiwibWVyY2hhbnRDb3VudHJ5Q29kZSI6Ijg0MCIsImFjcXVpcmVyQklOIjoiMTIzNDU2NzgiLCJhY3F1aXJlck1lcmNoYW50SUQiOiIxMjM0NTYiLCJ0aHJlZURTUmVxdWVzdG9yTmFtZSI6InZlcmlmb25lIiwidGhyZWVEU1JlcXVlc3RvcklEIjoidmVyaWZvbmUyMCIsImNhcmRCcmFuZCI6IlZJU0EifQ=="
, 
        "CAVV": "AAIBYYNoEwAAACcKhAJKdQAAAAA=", 
        "CurrencyCode": "554", 
        "ECIFlag": "05", 
        "ThreeDSVersion": "2.2.0", 
        "PAResStatus": "Y", 
        "SignatureVerification": "Y" 
    }, 
    "ProcessorTransactionId": "LUj6k3aJ51K6pUh2UeV1" 
} 

Step 6: (Client-side) Initialize the 3D Secure Script?

Initialize the 3D Secure Script using the JWT Token generated from Step 2.

This will begin the 3D Secure process:

Cardinal.setup('init', { jwt:?? 
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJqdGkiOiIzNjUzMTU0Yy1jNzczLTRhNjAtYWNkMi04MTc5YmJmNjllMjMiLCJpc3MiOiI1ZDEyMmU1OGMxYjQxMjI5M2MwYTUwZDIiLCJPcmdVbml0SWQiOiI1ZDExMmJjMWJiODc2ODIyNDBmOGRjMGQiLCJQYXlsb2FkIjp7fSwiaWF0IjoxNzA4Mzg5ODA2fQ.L1o-KrhFT6HqX5FbKEpC3CU5sDB4oA3yYRXzog0gAv1
?? 
});? 

Step 7: (Client-side) Card Number detection

While the customer is entering their card number, use one of the following “BIN detection” methods to
positively impact authentication success rates, increase the opportunity for frictionless authentication, and reduce
customer abandonment.

Option 1 (Recommended): Field Decorator

This implementation is the simplest and recommended approach and requires the least amount of work to
complete. Simply add a new attribute to the input field to identify which field it maps to within the Order Object.
The credit card number is mapped to the AccountNumber field, so for bin detection we would pass
AccountNumber to the attibute data-cardinal-field.



Example:

<input type="text" data-cardinal-field="AccountNumber" id=
"creditCardNumber" name="creditCardNumber" /> 

Option 2: Event Based

The bin.process event is the recommended BIN Detection implementation. It provides you, or integrator, the
greatest flexibility to initiate device profiling wherever they prefer in their purchase flow. It is best practice to
initiate bin.process immediately upon receiving the customer’s card number. Whenever possible, provide a
minimum of the first 9 BIN digits of the customer’s card number on bin.process. Merchants that provide fewer
than the first 9 digits are at risk of running the incorrect issuer Method URL.

Example:

Cardinal.trigger("bin.process", '1234567894561237') 
  .then(function(results){ 
    if(results.Status) { 
        
// Bin profiling was successful. Some merchants may want to only move forward with authentication 	if profiling was successful 

    } else { 
        // Bin profiling failed 
    } 
    
// Bin profiling, if this is the card the end user is paying with you may start the CCA flow at this point or 	send the lookup request 

    Cardinal.start('cca', myOrderObject); 
}) 
  .catch(function(error){ 
    // An error occurred during profiling 
}) 

 
You may have to trigger the bin events more than once if the end user is able to change their card number at the
point where Songbird is integrated. Songbird will only profile any given bin a single time, once profiling is
completed Songbird will return a success status. It is important that BIN Detection is completed on the final card
used for the purchase.

The event will resolve when bin profiling was successful or failed with a JSON object describing the outcome.

Step 8: (Client-side) Collect the sessionId

The sessionId is a unique ID which represents the device profile of the web user. This is used as part of the 3D
Secure Authentication process.

If the setup was successful, the event listener in Step 4, payments.setupComplete(), will be triggered, and return
the session ID.?

Within the response of setupCompleteData, there will be a value called sessionId:



setupCompleteData.sessionId

Returns:

0_6e0fedb-d642-47d1-88e2-b12a59ffe39e?

Step 9: (Client-side) Collect Card Details with Verifone.JS?

Use the Verifone.js script to securely encrypt the card details before transmitting it to Verifone.

Collect your Secure card capture key, and set this to a variable, for example:?

?const encryptionKey = '{Secure Card Capture Key}';??

Capture the cardholder details from the front-end and set this up as an object:

const card = {? 
??? "cardNumber": form.cardNumber.value,? 
??? "expiryMonth": form.expiryMonth.value,? 
??? "expiryYear": form.expiryYear.value,? 
??? "cvv": form.cvv.value,? 
? };

?Then call the verifone encryption method, passing in both the cardDetails and encryptionKey as parameters.? 

Calling the method:

verifone.getEncryptedCardDetails(card, encryptionKey)?

This method returns a Promise containing the encryptedCard field.

verifone.getEncryptedCardDetails(card, encryptionKey).then(data => console
.log(data.encryptedCard));?

Response:

Ls0LS1CRUdJTiBQR1AgTUVTU0FHRS0tLS0tDQpWZXJzaW9uOiBPcGVuUEdQLmpzIHY0LjEwLjkNCkNvbW1lbnQ6IGh0dHBzOi8vb3BlbnBncGpzLm9yZw0KDQp3WDREWGtJZjFmWDdHOUlTQWdNRWIxSEZUNytUbXNDc2k3aDNmeW02eEtDblNzK0RYZFNnblNDaFNsZEENClJLcXRsSmlJNmtpeU9JYzdnRmdBV3J3eVlCL1l1REI3S2R3TG0xdU5LbzhYYkREOWNBaFZTcFBrOEpvcg0KaFpLa09ERXhSaWJEeFBWQnM0czVVV2NubllHOVBOZzI2VXgxeXRRMGxxVVo4dTBLVm03U3JRRjRHZHYwDQpNeXA2NnAvNmJlc3cwT09iTU85TlBqd3ZFRldtWG9yTnhQM2tVZ0xYU1JJN2s4M01XNjd1TVErMFBUdTUNCjNGZG5LcjQyb1JTaHdYSE1FZ1pUckZmbkxGUE9ha3N1Y1NKd016WGVRTUZKSVhzQVFLYlN6RVhJYmZFeg0Ka2JUWm91TEFWTjhmd0RoUHRMaS9UcGI4NGVtZ04zY3UyNjNoVDlLQmRqcGd4bCtIQXNEekVtUjBncUR5DQpzRFovVDU1bHVhTjhTUzJ6cHJEWXNyOWcyV0Jhem10Yk8xYU80Y3lnMzk3RQ0KPVdZdTINCi0tLS0tRU5EIFBHUCBNRVNTQUdFLS0tLS0NCg==
??? 

 
These are the card details encrypted?. Pass this to your back end for processing payments.

Step 10: (Server-side) Perform a 3DS Lookup?

API Reference: https://verifone.cloud/api-catalog/3d-secure-api#tag/V2/operation/postV2Lookup

Make a POST request to Verifone using the encrypted card, device info (sessionId) and other data points to
receive the 3D Secure Response.

 
The device_info_id is the same value as the sessionId returned from step 8.

https://verifone.cloud/docs/online-payments/checkout/card-encryption-verifonejs
https://verifone.cloud/docs/online-payments/secure-card-capture-key#generate-a-secure-card-capture-key-via-verifone-central
https://verifone.cloud/api-catalog/3d-secure-api#tag/V2/operation/postV2Lookup


Request Method: POST

URL: https://cst.test-gsc.vfims.com/oidc/3ds-service/v2/lookup

Body:

{?? 
??? "amount": 100,?? 
??? "billing_first_name": "first_name",?? 
??? "billing_last_name": "last_name",?? 
??? "billing_address_1": address line 1",?? 
??? "billing_city": "City",?? 
??? "billing_country_code": "AU",?? 
??? "encrypted_card": "{{EncryptedCardValue==}}",?? 
??? "public_key_alias": "{{public_key}}",?? 
??? "currency_code": "{{currency}}",?? 
??? "device_info_id": "0_6e00fedb-d944-47d1-89e2-b12a59ffe39x",?? 
??? "email": "email@verifone.com",?? 
??? "merchant_reference": "Order number 1234",?? 
??? "threeds_contract_id": "{{3DS Contract ID}}"?? 
}

Response:

?{?? 
??? "acs_transaction_id": "9d08e1ba-0240-4283-813a-a3772d80de0e",?? 
??? "acs_url": "{ACS_URL},?? 
??? "authentication_id": "c923575f-86e4-45cf-9a43-d1ede3da3ac1",?? 
??? "challenge_required": "N",?? 
??? "card_brand": "Visa",?? 
??? "ds_transaction_id": "e3b59e11-5863-4c4a-aa34-cc13bab4f320",?? 
??? "eci_flag": "07",?? 
??? "enrolled": "Y",?? 
??? "error_no": "0",?? 
??? "order_id": "8001840452769160",?? 
??? "pares_status": "C",?? 
??? "payload": "
eyJtZXNzYWdlVHlwZSI6IkNSZXEiLCJtZXNzYWdlVmVyc2lvbiI6IjIuMi4wIiwidGhyZWVEU1NlcnZlclRyYW5zSUQiOiJiZDYwNjk0OC0yNzFlLTQ3MGEtYTI2OC0zOWNjZWJmMmQzNTEiLCJhY3NUcmFuc0lEIjoiOWQwOGU2YmEtMDI0MC00MjgzLTgxM2EtYTM3NzJkODBkZTBlIiwiY2hhbGxlbmdlV2luZG93U2l6ZSI6IjAyIn0
",?? 
??? "signature_verification": "Y",?? 
??? "threeds_version": "2.2.0",?? 
??? "transaction_id": "mm1WQNPXlhUnAYGyjNY1"?? 
}? 

Step 11A: (Server-side) Successful 3D Secure Lookup

If the lookup attempt was successful, and the details provided match the card holder details on record, the field
“pares_status” will be “Y”.

You can proceed directly to Step 12 to perform a payment using the details from the lookup request.

https://cst.test-gsc.vfims.com/oidc/3ds-service/v2/lookup


Step 11B: (Client-side) Pares_status = “C” Continue to the
authentication step?

In some cases, a one-time pin or “Step-up” challenge is required to authenticate the customer.

Cardinal.continue will only work after the payments.setupComplete event has been triggered.

Cardinal.continue is suggested to be run later in the flow if payments.setupComplete is not triggered yet.

Example:

Cardinal.continue('cca',?? 
{?? 
?"AcsUrl": “{ACS_URL}”,?? 
??? "Payload": 
"eyJtZXNzYWdlVHlwZSI6IkNSZXEiLCJtZXNzYWdlVmVyc2lvbiI6IjIuMi4wIiwidGhyZWVEU1NlcnZlclRyYW5zSUQiOiJiZDYwNjk0OC0yNzFlLTQ3MGEtYTI2OC0zOWNjZWJmMmQzNTEiLCJhY3NUcmFuc0lEIjoiOWQwOGU2YmEtMDI0MC00MjgzLTgxM2EtYTM3NzJkODBkZTBlIiwiY2hhbGxlbmdlV2luZG93U2l6ZSI6IjAyIn0"
?? 
?},?? 
?{?? 
??? "OrderDetails":{?? 
???????? "TransactionId" : "mm1WQNPXlhUnAYGyjNY1"?? 
?????????????????????? }?? 
??????? }?? 
);? 

This will present the 3D Secure modal window to the customer:
3D Secure modal window

 
For Sandbox testing, the code will always be 1234 and not sent to a phone number.

After completion of the one-time pin challenge, the 3D Secure plugin will return an outcome from one of the
SUCCESS Event Listener setup in Step 5, for example:

{ 
    "Type": "CCA", 
    "ExtendedData": { 
        "Amount": "1000", 
        "AuthorizationPayload": 
"eyJjb250YWluZXJWZXJzaW9uIjoiMSIsImVjaSI6IjA1IiwiYXV0aGVudGljYXRpb25WYWx1ZSI6IkFBSUJCWU5vRXdBQUFDY0toQUprZFFBQUFBQT0iLCJlZmZlY3RpdmVBdXRoVHlwZSI6IkNIIiwiYWNzT3BlcmF0b3JJRCI6Ik1lcmNoYW50QUNTIiwidGhyZWVEU1JlcXVlc3RvckNoYWxsZW5nZUluZCI6IjAxIiwidHJhbnNTdGF0dXMiOiJZIiwiZHNUcmFuc0lEIjoiYTl4OTNiNzAtOGIyMS00MTI4LWExNzctZjRhNDM0YzAwOWZjIiwiYWNzVHJhbnNJRCI6IjhiYWFhZTMwLWFjY2EtNDYyZC04NzY3LWM0NDdlMWEwYmUwMCIsIm1lc3NhZ2VWZXJzaW9uIjoiMi4yLjAiLCJtZXJjaGFudE5hbWUiOiJWZXJpRm9uZSIsInB1cmNoYXNlRGF0ZSI6IjIwMjQwNTEyMjMyMTExIiwicHVyY2hhc4VBbW91bnQiOiIxMDAwIiwiYnJvd3NlcklQIjoiMjQwMTo3MDAwOmNiMDQ6ZmUwMDpiNTFjOjY2M2U6ZmM0ZDoxNGM5IiwibWVyY2hhbnRDb3VudHJ5Q29kZSI6Ijg0MCIsImFjcXVpcmVyQklOIjoiMTIzNDU2NzgiLCJhY3F1aXJlck1lcmNoYW50SUQiOiIxMjM0NTYiLCJ0aHJlZURTUmVxdWVzdG9yTmFtZSI6InZlcmlmb25lIiwidGhyZWVEU1JlcXVlc3RvcklEIjoidmVyaWZvbmUyMCIsImNhcmRCcmFuZCI6IlZJU0EifQ=="
, 
        "CAVV": "AAIBYYNoEwAAACcKhAJKdQAAAAA=", 
        "CurrencyCode": "554", 
        "ECIFlag": "05", 
        "ThreeDSVersion": "2.2.0", 
        "PAResStatus": "Y", 
        "SignatureVerification": "Y" 
    }, 
    "ProcessorTransactionId": "LUj6k3aJ51K6pUh2UeV1" 
} 

Understanding the Impact of the different 3D Secure Responses



If "PAResStatus" is one of the following:
“Y" – 3DS is Successful
“A” – 3DS was Attempted

And “SignatureVerification” is:
“Y” - Contents of the message can be trusted

And “enrolled” is:
“Y” - Cardholders bank is participating in 3D Secure Process.

This will result in a liability shift off the merchant.

If "PAResStatus” is one of the following:
“N” - Failed
“U” - Unavailable
“R” - Rejected
“C” - Challenge required (Temporary status)

Or a blank value

Or “SignatureVerification” is:
“N” - Signature verification is invalid

OR “enrolled” is:
“N” - Cardholders bank is not participating in 3D Secure
“U” - Enrollments status unavailable
“B” - Enrollment status was bypassed

The liability of the transaction will remain with the merchant.

 
This is not a complete guarantee of liability shift. The information presented in this document is based on
published Card Associations (Visa, Mastercard, AMEX, ProtectBuy, and JCB) Operating Rules and Regulations,
and may be subject to change.

Step 12: (Server-side) Perform a Server-To-Server Payment with 3D
Secure?

Using the data from the lookup and if applicable, the step-up challenge response, you may perform a 3D Secure
authenticated payment. See the example API request below:

API Reference: https://verifone.cloud/api-catalog/verifone-ecommerce-api#tag/Ecom-Payments

Request method: POST

URL: https://cst.test-gsc.vfims.com/oidc/api/v2/transactions/card?

Example API Request:

{?? 
? ? "currency_code": "{{currency}}",?? 
? ? "amount": 1000,?? 
? ? "merchant_reference": "VF Test",?? 
? ? "payment_provider_contract": "{{ppc}}",?? 
? ? "card_brand": "VISA",?? 
? ? "public_key_alias": "{{key_alias}}",?? 
? ? "encrypted_card": 

https://verifone.cloud/api-catalog/verifone-ecommerce-api#tag/Ecom-Payments
https://cst.test-gsc.vfims.com/oidc/api/v2/transactions/card


"LS0tLS1CRUdJTiBQR1AgTUVTU0FHRS0tLS0tDQpWZXJzaW9uOiBPcGVuUEdQLmpzIHY0LjEwLjkNCkNvbW1lbnQ6IGh0dHBzOi8vb3BlbnBncGpzLm9yZw0KDQp3WDREcTIvejFNVU0rTTRTQWdNRW1tUTN0UERDMUVGVThHb3l5a2sxMnBQS1Q2ZVkxUisveU1PTWhNZVUNCmkyd1BlYWd0ZU4vRXVoazRYYVV6WHQ1Q29BU2JubmkvK1A2bG5vRUVQcC9wYlREcFNZMEIvTnJaOWU4RQ0KTm91a0dSUkdLRDBpQUdUek01Z0RRRk1BU3UydHZsSkNPR1lrRUFESzhlOUVmRkt0ZTdyU3JRRk90ajlVDQpaQXN1Nkc2b3RPYVI4NGtobi9VMjArMmQrQnoxVGM2TWZBeHBVTFRQOHpwUVJsWWh2Y3ZMWjNQUDBBK1gNCmhpckdUQnJCYzViWDlRNnhQalRmcFlqQ0U0Y0NnTEFCcmdzNkhFZ1J3ZElURXBmR0hBZ2V0c0xpcVRkYQ0KTGxxZmVtQW4rUWdRUDZCeTdNSXZTZWE3WTM3MXVqRUYxaW1RMCt0NlhBb09zTjMrb1lMRkZPeFRkSkc5DQpDM3FZYm1QRlVWUFFsVHB2VlZ4S0dNVlRmV1hLdEttLy9kMklqa3lONkI4ag0KPVZseGwNCi0tLS0tRU5EIFBHUCBNRVNTQUdFLS0tLS0NCg=="
,?? 
? ? "threed_authentication": {?? 
? ? ? ? "eci_flag": "05",?? 
? ? ? ? "enrolled": "Y",?? 
? ? ? ? "cavv": "AAIBBYNoEwAAACcKhAJkdQAAAAA=",?? 
? ? ? ? "pares_status": "Y",?? 
? ? ? ? "threeds_version": "2.2.0",?? 
? ? ? ? "ds_transaction_id": "4eaa10ef-e5e4-4b4c-8aef-29439e450b60",?? 
? ? ? ? "signature_verification": "Y",? 
? ? ? ? "error_desc": "Success",?? 
? ? ? ? "error_no": "0"?? 
? ? } 
}??

Response:

{? 
? ? "id": "3e5baa3a-cdcd-4b0a-b23d-9b4c0528ca62",? 
? ? "payment_provider_contract": "d1f0f6ab-1d40-44ae-b16b-8f09fe6fd77f",? 
? ? "amount": 1000,? 
? ? "blocked": false,? 
? ? "merchant_reference": "VF Test",? 
? ? "payment_product": "CARD",? 
? ? "status": "AUTHORIZED",? 
? ? "arn": "SIMULATORBCLDCG4DGS5MSDEV46JV",? 
? ? "scheme_reference": "170320243e5baa3acdcd4b0ab23d9b4c0528ca62",? 
? ? "created_by": "7b360b69-1787-40dd-ac56-fb3b8b93f230",? 
? ? "cvv_present": true,? 
? ? "cvv_result": "4",? 
? ? "stored_credential": {?},? 
? ? "details": {? 
? ? ? ? "auto_capture": true? 
? ? },? 
? ? "reason_code": "00",? 
? ? "shopper_interaction": "ECOMMERCE",? 
? ? "stan": "157449",? 
? ? "threed_authentication": {? 
? ? ? ? "eci_flag": "05",? 
? ? ? ? "enrolled": "Y",? 
? ? ? ? "cavv": "AAIBBYNoEwAAACcKhAJkdQAAAAA=",? 
? ? ? ? "pares_status": "Y",? 
? ? ? ? "threeds_version": "2.2.0",? 
? ? ? ? "ds_transaction_id": "4eaa10ef-e5e4-4b4c-8aef-29439e450b60"? 
? ? },? 
? ? "reversal_status": "NONE",? 
? ? "additional_data": {? 
? ? ? ? "initiator_trace_id": "157449"? 
? ? },? 
? ? ? ? "card_details": {?lia 
? ? ? ? "masked_card_number": "411111****1111",? 
? ? ? ? "expiry_year": 2030,? 
? ? ? ? "expiry_month": 12? 
? ? },? 
? ? "balance_amount": 0? 
}? 



Your Server-to-server, 3D Secure Authenticated transaction is now complete.

Additional steps

Refund a transaction

Depending on your supported acquirer and according to the settlement time. A payment can be refunded fully or
partially via Verifone Central, or via the Ecommerce API using the refund payment API call.

Notification methods

Set up notifications in Verifone Central to receive transaction events via email or webhook URL’s. Leverage
notifications to receive transaction results to different systems at the time of payment.

Advanced Payment flow with Preauthorization

To perform a preauthorization, two fields need to be specified in the payment request in Step 12:

capture_now : false
auth_type : “PRE_AUTH”

Once the Preauth is authorized, it can be captured for settlement, or cancelled (voided) using payment actions
through Verifone Central or the eCommerce API.

Adding Tokenization

Set up a token scope in Verifone Central to set up a “Vault” with Verifone to store tokens. Request a token by
adding the “Token_preference” object to your API request.

Adding Stored credentials

After setting up Tokenization, use the Stored Credential Framework to send MIT or CIT-approved transactions.

https://verifone.cloud/docs/online-payments/acquirers
https://verifone.cloud/docs/online-payments/payment-actions/refunds#refunding-a-transaction-via-the-api
https://verifone.cloud/docs/online-payments/payment-actions/refunds#refunding-a-transaction-via-the-api
https://verifone.cloud/api-catalog/verifone-ecommerce-api
https://verifone.cloud/api-catalog/verifone-ecommerce-api#tag/Payment-Modifications/operation/refundPayment
https://verifone.cloud/docs/portal/administration/notifications
https://verifone.cloud/docs/online-payments/payment-actions/capturing-authorisation#capturing-an-authorization__000a
https://verifone.cloud/docs/online-payments/payment-actions/void
https://verifone.cloud/api-catalog/verifone-ecommerce-api#tag/Ecom-Payments
https://verifone.cloud/docs/online-payments/tokenization#creating-a-token-scope-in-verifone-central
https://verifone.cloud/docs/online-payments/tokenization#requesting-a-token
https://verifone.cloud/docs/online-payments/stored-credentials

