
3-D Secure JS

1.0 Setting up the 3DS Javascript
The JavaScript used in the browser flow performs most of the heavy lifting on behalf of the merchants. The JavaScript collects all the device
data of the user’s browser, communicates directly with the 3DS Server and handles the user experience of the cardholder during the
challenge.

Merchant’s back-end Merchant’s front-end Payment Brand

1. Create Request JWT

 2. Payments.setupComplete

 3. Start payment 4. Interaction with the Payment Brand

 5. Payments.validated

6. Validate Response JWT

1.1 Add the JavaScript on website
The JavaScript can be added to your site as any other client side script, through a script tag. It is suggested to add the script after all your
content before closing the HTML body tag.

Include the script:

<script src="https://songbirdstag.cardinalcommerce.com/edge/v1/songbird.js"></script>

The JavaScript URLs depend on the environment used:

Environment URL

Sandbox https://songbirdstag.cardinalcommerce.com/edge/v1/songbird.js

Production https://you.will.receive.this.url.during.onboarding.js

1.2 Configure the JavaScript
Cardinal.configure is an optional function that allows to pass configuration object into the JavaScript. Not using this function to your
integration will result to use the default configuration options. It is advised to call this function only once per page load and should be called
before Cardinal.setup.

Root Level Configuration

Field Type Default Description

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

1

https://songbirdstag.cardinalcommerce.com/edge/v1/songbird.js"></script>
https://songbirdstag.cardinalcommerce.com/edge/v1/songbird.js
https://you.will.receive.this.url.during.onboarding.js
https://verifone.cloud/docs/uk-gateway/threeds_js

timeout int 8000 The time in milliseconds to wait
before a request to Centinel API
is considered a timeout

maxRequestRetries int 1 How many times a request
should be retried before giving
up as a failure.

logging object

button object

payment object

Logging

Field Type Default Description

level string off The level of logging to the
browser console. Enable this
feature to help debug and
implement Songbird.

Possible Values: off - No logging
to console enabled. This is the
setting to use for production
systems. on - Similar to info
level logging, this value will
provide some information about
whats occurring during a
transaction. This is
recommended setting for
merchants implementing
Songbird verbose - All logs are
output to console. This method
can be thought of as debug
level logging and will be very
loud when implementing
Songbird, but is the level
needed when getting support
from the Cardinal team.

Button

Field Type Default Description

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

2

https://verifone.cloud/docs/uk-gateway/threeds_js

containerId string Cardinal-Payments The HTML Id value of the
container to inject all payment
buttons into.

Payment

Field Type Default Description

view string modal What type of UI experience to
use when Songbird injects
payment brand UI elements into
the page. Possible Values: ·
modal - Render as a modal
window. This view type renders
the payment brand over your
page, making it feel separate
from your page. · inline - Render
inline to the page. This view
type embeds the payment
brand into the page making it
feel like its a part of your
website.

framework string cardinal What kind of view framework
should be used to render the
payment brand. If your site is
using a supported framework
and you have custom styles
applied to it, we will use that
framework to make keep the
consistent look and feel of your
site. When using any other
frameworks than 'cardinal' your
site is responsible for including
the framework assets including
CSS, JavaScript, and any other
additional files needed. Possible
Values: cardinal - Use the
custom Cardinal view framework
built and maintained by
CardinalCommerce. Songbird
will handle all UI rendering and
styles, no additional work is
needed. bootstrap3 - Use
bootstrap 3 modal to render the
UI elements.

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

3

https://verifone.cloud/docs/uk-gateway/threeds_js

Field Type Default Description

displayLoading boolean false A flag to enable / disable a
loading screen while requests
are being made to 3DS Server
API services. This can provide
feedback to the end user that
processing is taking place and
they should not try to reload the
page, or navigate away.

For example, to control the logging volume from the library, use the Cardinal.configure function, as seen below:

Cardinal.configure example

Cardinal.configure({
logging: {
level: "on"
}
});

 Example of using all configuration option possible

{
timeout: 8000,
maxRequestRetries: 2,
button:{
containerId: 'Cardinal-Payments'
},
logging:{
level: 'on'
},
payment:{
view: 'modal',
framework: 'bootstrap3',
displayLoading: false
}
}

1.3 Listen for events
This function sets up an event subscription with the JavaScript to trigger a callback function when the event is triggered by the JavaScript. A
valid event subscription requires a namespace and a callback function to be run when the event is triggered. Calling this function with the
same namespace multiple times will result in callback being triggered multiple times.

The syntax of the function is:

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

4

https://verifone.cloud/docs/uk-gateway/threeds_js

Cardinal.on(EVENT_NAME_SPACE, CALLBACK_FUNCTION);

The following sections discuss the events that a merchant can listen to.

1.3.1 payments.setupComplete

payments.setupComplete() is an optional event which should be called after the Cardinal.setup() function.

To listen the payments.setupComplete event:

Cardinal.on('payments.setupComplete', function(setupCompleteData){
// Do something
});

 If an error has happened during the Cardinal.setup() function, then the payments.setupComplete() will not be triggered. If your callback gets
executed, you know that the JavaScript is available to run transactions. This function will receive 2 arguments that describe the loaded state
of theJavascript and the current session identifier.

The following object is returned back to the merchant on the payments.setupComplete event as the first argument.

Key Type Description

sessionId String Merchant Consumer Session Id - This is the
consumer's session id assigned to this user
by 3DS Server API.

modules Array of Module State Objects An array of modules that were attempted to
be loaded and their status. You can
determine which payment brands were
loaded successfully and which may have
been configured on the merchant account
but failed to load properly. For 3DS ‘cca’ will
be returned.

Module State

Key Type Description

loaded String Merchant Consumer Session Id - This is the
consumer's session id assigned to this user
by 3DS Server API.

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

5

https://verifone.cloud/docs/uk-gateway/threeds_js

Key Type Description

modules Array of Module State Objects An array of modules that were attempted to
be loaded and their status. You can
determine which payment brands were
loaded successfully and which may have
been configured on the merchant account
but failed to load properly. For 3DS ‘cca’ will
be returned.

Example of payments.setupComplete data object

{
"sessionId": "0_4f85c155-6604-4056-8957-7090412af179",
"modules": [{
"module": "CCA",
"loaded": true
}]
}

1.3.2 payments.validated

payments.validated event is triggered when the transaction has been finished and the control is given back to the merchant page. It includes
data on how the transaction attempt ended that should be used in the logic for reviewing the results and decision making, how to proceed
with the transaction.

If the payments.validated is successful ("ActionCode": "SUCCESS") then the data needed to proceed with the payment
Authorisation (CAVV, ECIFlag, XID, Enrolled, PAResStatus, SignatureVerification) will be included in the "Payment" object.

To listen the payments.validated event:

Cardinal.on('payments.validated', function(decodedResponseData, responseJWT){
// Do something
});

 The payments.validated event consists of the Response Data and the Response JWT.

Field Type Required Desc

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

6

https://verifone.cloud/docs/uk-gateway/threeds_js

Response Data JSON object R The decoded Payload claim from
the response JWT. This is a
convenience value that is
passed back to the merchant for
client side logic decision
making. This object should not
be used to send data to third
parties, as its validity cannot be
confirmed.

Response JWT String O Response JWT from 3DS Server
API service. This is where the
data field came from except in
edge cases where a JWT wasn't
returned due to an error. The
merchant should use the data
within this value when sending
any data to third parties, since
the validity of this data can be
confirmed server side by
verifying the JWT signature.

The payments.validated can result into three different cases:

Type Response Data Response JWT Description

Normal Processing Present Present No issues encountered

Api Error Present Present An error occurred but 3DS
Server API was able to generate
a response JWT. You can
validate these error responses
by validating the JWT as you
would in a successful
transaction

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

7

https://verifone.cloud/docs/uk-gateway/threeds_js

Type Response Data Response JWT Description

Service Error Present Absent An error was encountered but a
response JWT was not
generated. This could be many
things including:

· Request to 3DS Server API
timed out.

· Request JWT failed
authentication at 3DS Server
API.

· 3DS Server API is unavailable
to receive transactions. ·
JavaScript encountered an
unrecoverable error

Response Data

At minimum the response data will include a base object as seen below. However, depending on what occurred in the response additional
fields may be present.

Type Description

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

8

https://verifone.cloud/docs/uk-gateway/threeds_js

ActionCode The resulting state of the transaction.

Possible values:

SUCCESS - The transaction resulted in success for the payment
type used. This would indicate the user has successfully completed
authentication.

NOACTION - The transaction was successful but requires in no
additional action. This would indicate that the user is not currently
enrolled in 3-D Secure, but the API calls were successful.

FAILURE - The transaction resulted in an error. For example, with a
3DS transaction this would indicate that the user failed
authentication or an error was encountered while processing the
transaction.

ERROR - A service level error was encountered. These are
generally reserved for connectivity or API authentication issues. For
example, if your JWT was incorrectly signed, or Cardinal services
are currently unreachable.

Validated This value represents whether transaction was successfully or not.

ErrorNumber Application error number. A non-zero value represents the error
encountered while attempting the process the message request.

ErrorDescription Application error description for the associated error number.

Payment Payment Object

The payment object for the 3DS transactions is:

Field Name Description Required/ Optional/
Conditional

Field Definition

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

9

https://verifone.cloud/docs/uk-gateway/threeds_js

Enrolled Status of Authentication
eligibility. Possible Values:

Y = Yes- Bank is participating in
3-D Secure protocol and will
return the ACSUrl

N = No - Bank is not
participating in 3-D Secure
protocol

U = Unavailable - The DS or ACS
is not available for
authentication at the time of the
request

B = Bypass- Merchant
authentication rule is triggered
to bypass authentication in this
use case

NOTE: If the Enrolled value is
NOT Y, then the Consumer is
NOT eligible for Authentication.

 String (1)

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

10

https://verifone.cloud/docs/uk-gateway/threeds_js

CAVV Cardholder Authentication
Verification Value (CAVV)
Authentication Verification Value
(AVV) Universal Cardholder
Authentication Field (UCAF).
This value should be appended
to the authorization message
signifying that the transaction
has been successfully
authenticated. This value will be
encoded according to the
merchants configuration in
either Base64 encoding or Hex
encoding. A Base64 encoding
merchant configuration will
produce values of 28 or 32
characters. A Hex encoding
merchant configuration will
produce values of 40 or 48
characters. The value when
decoded will either be 20 bytes
for CAVV or 20 or 24 bytes if the
value is AAV (MasterCard UCAF).

O String (40)

ECIFlag Electronic Commerce Indicator
(ECI). The ECI value is part of
the 2 data elements that
indicate the transaction was
processed electronically. This
should be passed on the
authorization transaction to the
gateway/processor.

O String (40)

PAResStatus Transaction status result
identifier. Possible Values:

Y – Successful Authentication

N – Failed Authentication

U – Unable to Complete
Authentication A – Successful
Attempts Transaction

O String (1)

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

11

https://verifone.cloud/docs/uk-gateway/threeds_js

SignatureVerification Transaction Signature status
identifier. Possible Values:

Y - Indicates that the signature
of the PARes has been validated
successfully and the message
contents can be trusted.

N - Indicates that the PARes
could not be validated. This
result could be for a variety of
reasons; tampering, certificate
expiration, etc., and the result
should not be trusted.

O String (1)

XID Transaction identifier resulting
from authentication processing.

NOTE: Gateway/Processor API
specification may require this
value to be appended to the
authorization message. This
value will be encoded according
to the merchants configuration
in either Base64 encoding or
Hex encoding. A Base64
encoding merchant
configuration will produce
values of 28 characters. A Hex
encoding merchant
configuration will produce
values of 40 characters.

O String (40)

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

12

https://verifone.cloud/docs/uk-gateway/threeds_js

UCAFIndicator Universal Cardholder
Authentication Field (UCAF)
Indicator value provided by the
issuer.

Possible Values:

0 - Non-SecureCode transaction,
bypassed by the Merchant

1 - Merchant-Only SecureCode
transaction

2 - Fully authenticated
SecureCode transaction

NOTE: This field is only returned
for MasterCard transactions

 String (1)

ACSTransactionId Unique transaction identifier
assigned by the ACS to identify
a single transaction.

C String (36)

ThreeDSServerTransactionId Unique transaction identifier
assigned by the 3DS Server to
identify a single transaction.

C String (36)

DSTransactionId Unique transaction identifier
assigned by the Directory
Server (DS) to identify a single
transaction.

NOTE: Required for Mastercard
Identity Check transaction in
Authorization

C String (36)

Below you some samples of different values returned to the payments.validated event are presented. These JSON objects would be the first
argument and the Payload claim of the response JWT where a response JWT was returned.

Successful Response example:

{
"Validated": true,
"Payment": {
"Type": "CCA",
"ProcessorTransactionId": "uAthLfEYg83iEverTlk0",

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

13

https://verifone.cloud/docs/uk-gateway/threeds_js

"ExtendedData": {
"CAVV": "AAABAWFlmQAAAABjRWWZEEFgFz+=",
"ECIFlag": "05",
"XID": "dUF0aExmRVlnODNpRXZlclRsazA=",
"Enrolled": "Y",
"PAResStatus": "Y",
"SignatureVerification": "Y"
}
},
"ActionCode": "SUCCESS",
"ErrorNumber": 0,
"ErrorDescription": "Success"
}

API Level Error (will include a Response JWT to be validated)

{
"Validated": false,
"ErrorNumber": 4000,
"ErrorDescription": "Validation Error A valid merchant consumer session ID is required.",
"ActionCode": "ERROR",
"Payment": {}
}

Service Level Error (will not include a Response JWT)

{
"Validated": false,
"ErrorNumber": 1000,
"ErrorDescription": "Error processing request. We have encountered an unexpected error.",
"ActionCode": "ERROR",
"Payment": {}
}

1.4 Initialise JavaScript
To initiate the communication with the server, call the Cardinal.setup() function. All the necessary pre-processing steps should have been
completed by the time that the consumer is ready to checkout. Listen for the payments.setupComplete event to get notified when the
JavaScript has finished initializing (Section 5.4.1).

1.4.1 Set up the JavaScript

Cardinal.setup function informs the JavaScript what type of event you are planning to complete on the page it is running on and what files it
needs to bootstrap to facilitate that event.

Field Type Required/ Optional Description

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

14

https://verifone.cloud/docs/uk-gateway/threeds_js

Initialization Type String R Tells Songbird.js which flow
you're setting up

Initialization Data JSON object R An object used to pass any
additional required data to
properly complete Songbird
initialization. This object will
differ from initialization type to
initialization type.

Initialization types

Key Description

init Setup the necessary files to run the authentication. You should use
this initialization type anytime you want to complete payer
authentication flows. This type would typically be used on a cart
page, or payment details collection page.

complete Setup the necessary files to return the authorization result to
Cardinal. You should use this initialization type if you only plan on
returning the authorization / authentication results to Cardinal. This
type would typically be used on an order complete page that
renders an 'Order was successfully submitted' message.

Example of Cardinal.setup

Cardinal.setup("init", {
jwt: document.getElementById("JWTContainer").value
});

 A common way to pass your JWT into the JavaScript is to place its value into a hidden input on page load. Using Cardinal.setup() function you
can look for that element and select its value.

Example of placing a JWT into a hidden input

<input type="hidden" id="JWTContainer" value="[Insert your JWT here]" />

1.5 Cardinal Continue

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

15

https://verifone.cloud/docs/uk-gateway/threeds_js

After the Lookup Response is returned, pass the ACSUrl (acs_url), Payload (payload), and TransactionId (transaction_id) and include them in
the Cardinal.continue function in order to proceed with the authentication session. The Cardinal.continue will display a modal window and
automatically post the consumer's session over to the Issuer’s URL (acs_url) for authentication.

The syntax for Cardinal.continue:

Cardinal.continue(PAYMENT_BRAND, CONTINUE_DATA, ORDER_OBJECT, NEW_JWT)

Field Type Required/ Optional Description

Payment Brand String R The payment brand to continue.
For 3DS the value ‘cca’ should
be passed.

Continue Object JSON object R A JSON object containing all the
necessary data to complete a
3DS post to an ACS to complete
a 3DS transaction.

Order Object JSON object O As Order Object pass the
following object replacing the
‘authentication_id’ with the
value received in the lookup
response. Example:
{"OrderDetails":{
"TransactionId" :"transaction_id
"}}

JWT String O A updated JWT to use while
processing the transaction. This
allows the merchant to switch
JWT's between init and continue
events.

Continue Object

Field Type Required/ Optional Description

AcsUrl String R The acs_url returned in the
lookup response

Payload String R The ‘payload’ field returned on
the lookup response

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

16

https://verifone.cloud/docs/uk-gateway/threeds_js

Cardinal.continue will only work after the payments.setupComplete event has been triggered. Cardinal.continue is suggested to be run later
in the flow if payments.setupComplete is not triggered yet.

Example of Cardinal.continue:

Cardinal.continue('cca',
{
"AcsUrl":
"https://testcustomer34.cardinalcommerce.com/merchantacsfrontend/pareq.jsp?vaa=b&gold=AAAAAAAA...AAAAAAA",
"Payload":
"eNpVUk1zgjAQvedXME7PJEFBVdKt1CECeDkVCk2PcfcnNjv8Kr+7tx4nlbGOcz/se6G1uMENPTPeeIz1G37WGEUth7YnpO21TfTvF3wDCBqspQ=
="
},
{
"OrderDetails":{
"TransactionId" :"123456abc"

}
}
);

1.6 BIN Detection
To successfully complete the 3DS Method, the Issuing bank should be contacted to receive the browser information before the authentication
is started. Therefore, the BIN is required to be communicated to the JavaScript before sending the lookup request.

There are two ways to implement the BIN Detection to a merchant’s web application:

1) Field Decorator This implementation is the simplest and recommended approach when the full PAN is available. A merchant may directly
start the JavaScript, provide the PAN and allow for payments.setupComplete event to complete. A new attribute to the input field to identify
which field it maps to within the Order Object needs to be added. The credit card number is mapped to the AccountNumber field, therefore
for the BIN Detection the AccountNumber will be passed to the attribute ‘data-cardinal-field’.

Field Decorator Example

<input type="text" data-cardinal-field="AccountNumber" id="creditCardNumber" name="creditCardNumber" />

 The field decorator will attach an event listener to the element that will update the BIN as the cardholder types it in. The BIN value will be
updated automatically if the cardholder changes cards or needs to correct an entry.

2) Event Based

The bin.process event is the recommended event base profiling the merchant uses an card that is stored on file. The merchant will need to
provide a minimum of the first 6 (e.g. BIN) up to the full card number of the consumer (e.g. max of 19 digits). The more digits of the card
number provided the better chances of matching if there is a corresponding EMV 3DS Method URL.

Bin.process example

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

17

https://verifone.cloud/docs/uk-gateway/threeds_js

Cardinal.trigger("bin.process", '1234567894561237');

1.7 Cardinal.trigger
Cardinal.trigger function triggers an event within Songbird. This is a way to actively send Songbird data instead of waiting passively for
events to occur.

Cardinal.trigger syntax

Cardinal.trigger("EVENT_NAME_SPACE", 'DATA');

1.7.1 bin.process

For bin.process event described in BIN Detection.

Cardinal.trigger implementation example

Cardinal.trigger("bin.process", '1234567894561237')
.then(function(results){
if(results.Status) {
// Bin profiling was successful. Some merchants may want to only move forward with CCA if profiling was
successful
} else {
// Bin profiling failed
}

// Bin profiling, if this is the card the end user is paying with you may start the CCA flow at this point or
send the lookup request
Cardinal.start('cca', myOrderObject);
})
.catch(function(error){
// An error occurred during profiling
})

1.7.2 jwt.update

jwt.update is an event to allow the merchant to change the JWT at any point. This event will update the local cached order object within the
JavaScript but it will not push anything to the Cardinal infrastructure. This removed the need to pass in a new JWT into an event such as
Cardinal.start or Cardinal.continue.

Cardinal.trigger implementation example

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

18

https://verifone.cloud/docs/uk-gateway/threeds_js

Cardinal.trigger('jwt.update', 'my_new_jwt_value');

https://verifone.cloud/docs/uk-gateway/threeds_js
Updated: 15-Apr-2022

19

https://verifone.cloud/docs/uk-gateway/threeds_js

