
https://verifone.cloud/docs/uk-gateway/api_card
Updated: 29-Oct-2021

Card

This guide contains the required steps to process card payments through the API & Inject. The main payment
actions that can be applied to card transactions will each be described here. A prerequisite is added to each
section which is required in order to perform the action.

All examples are done with the minimum required fields, please view the API reference documentation to check
up-to-date required fields. Always check the page of the connection you are using to process your payment, most
connections have exceptions regarding which payment actions can be performed and other exceptions regarding
the currencies, dynamic descriptor formatting, customer object requirements, etc.

Authorize

Action Authorize

Description
Authorizing a card transaction will reserve the amount on the users card account at the issuer.
Money will not yet be deducted from the bank account. It will defer per acquirer and issuer when
the authorization is not valid anymore.

Link to API
docs

https://sandbox.omni.verifone.cloud/docs/api#operation/createCardTransa…

Prerequisite
1

A tokenized card for the card field.

Prerequisite
2

An account with a card processor attached to it. The account ID will need to be used for the
account field.

Prerequisite
3

Check the connection page for the acquirer you are using for any exceptions regarding the
dynamic descriptor, currency, customer requirements or other requirements.

Post the following body to the /transaction endpoint:

{
 "account": "account.id",
 "amount": 1000,
 "card": "card.id",
 "capture_now": false,
 "customer_ip": "string",
 "dynamic_descriptor": "dynamic_descriptor",
 "merchant_reference": "string",
 "user_agent": "string",
}

/docs/uk-gateway/api_card
https://sandbox.omni.verifone.cloud/docs/api
https://sandbox.omni.verifone.cloud/docs/api#operation/createCardTransaction
/docs/uk-gateway/payments_tokenization
/docs/uk-gateway/key_concepts_account

Notice that in the above example the capture_now field is set to false. This is the flag that is used to
authorize a transaction. Setting this field to true would attempt to immediately capture the transaction,
otherwise known as a sale.

If the transaction is authorized the response should contain the following field:

{
 ...
 "status": "AUTHORIZED"
 ...
}

 The transaction has now been authorized and can be voided or captured.

Void authorization

Action Void authorization

Description
Voiding an authorized transaction means that the authorization will be reversed, freeing up the
reserved funds on the cardholder account.

Link to API
docs

https://sandbox.omni.verifone.cloud/docs/api#operation/voidAuthCardTran…

Prerequisite
1

A transaction that can be voided for use in the id field. This can be obtained by performing an
authorization (see previous step) and using the returned id from the transaction in the previous
step.

Prerequisite
2

Check the connection page for the acquirer you are using for any exceptions regarding the
dynamic descriptor, currency, customer requirements or other requirements.

Voiding authorizations requires you to include the transaction id in the POST URL. The url should be formatted
like so: https://sandbox.omni.verifone.cloud/transaction/id/void where id is replaced with the
transaction id.

If the void is accepted by the acquirer the response should contain the following field:

{
 ...
 "status": "AUTHORIZATION_VOIDED"
 ...
}

 Your authorization has been successfully voided.

Capture

Action Capture

Description
Capturing a card transaction will deduct the amount from the cardholders account at the issuer.
Settlement typically follows within 1-3 days. This will depend on your acquirer.

https://sandbox.omni.verifone.cloud/docs/api#operation/voidAuthCardTransaction
https://sandbox.omni.verifone.cloud

Action Capture
Link to API
docs

https://sandbox.omni.verifone.cloud/docs/api#operation/captureCardTrans…

Prerequisite
1

A transaction id that can be captured for use in the id field. This can be obtained by performing
an authorization (see previous step) and using the returned id from the transaction in the previous
step.

Prerequisite
2

Check the connection page for the acquirer you are using for any exceptions regarding the
dynamic descriptor, currency, customer requirements or other requirements.

Capturing transactions requires you to include the transaction id in the POST URL. The url should be formatted
like so: https://sandbox.omni.verifone.cloud/transaction/id/capture where id is replaced with the
transaction id.

The body should contain the amount you would like to capture on the transaction. It is only possible to capture
less than the authorized amount, it is currently not possible to perform multiple captures on the same
authorization.

{
 ...
 "amount": "1000
 ...
}

 If the capture is accepted by the acquirer the response should contain the following field:

{
 ...
 "status": "SETTLEMENT_REQUESTED"
 ...
}

 The transaction has now been captured. Once the settlement files are received from the acquirer the transaction
will change to the status SETTLEMENT_COMPLETED. It usually takes 1-3 days before the settlement files are
received, this timeframe differs per acquirer.

With some acquirers it is also possible to void the capture request.

Void capture

Action Void capture

Description
Voiding a captured transaction means that the capture request will be reversed, freeing up the
reserved funds on the cardholder account. This is only possible after the transaction reaches the
status SETTLEMENT_REQUESTED and before it is processed.

Link to API
docs

https://sandbox.omni.verifone.cloud/docs/api#operation/voidCaptureCardT…

https://sandbox.omni.verifone.cloud/docs/api#operation/captureCardTransaction
https://sandbox.omni.verifone.cloud
https://sandbox.omni.verifone.cloud/docs/api#operation/voidCaptureCardTransaction

Action Void capture

Prerequisite
1

A transaction that can be voided for use in the id field. This can be obtained by performing an
authorization (see previous step) and using the returned id from the transaction in the previous
step.

Prerequisite
2

Check the connection page for the acquirer you are using for any exceptions regarding the
dynamic descriptor, currency, customer requirements or other requirements.

Voiding authorizations requires you to include the transaction id in the POST URL. The url should be formatted
like so: https://sandbox.omni.verifone.cloud/transaction/id/void_capture where id is replaced with
the transaction id.

If the void is accepted by the acquirer the response should contain the following field:

{
 ...
 "status": "SETTLEMENT_CANCELLED"
 ...
}

 Your capture has been succesfully voided.

Authorize & Capture (Sale)

Action Authorize & Capture
Description Directly authorize and capture a transaction.

Link to API
docs

https://sandbox.omni.verifone.cloud/docs/api#operation/createCardTransa…

Prerequisite
1

A tokenized card for the card field.

Prerequisite
2

An account with a card processor attached to it. The account ID will need to be used for the
account field.

Prerequisite
3

Check the connection page for the acquirer you are using for any exceptions regarding the
dynamic descriptor, currency, customer requirements or other requirements.

Capturing and authorizing a transaction works the same as a regular authorization with one small difference: The
capture_now flag needs to be set to true.

Post the following body to the /transaction endpoint:

{
 "account": "account.id",
 "amount": 1000,
 "card": "card.id",
 "capture_now": true,
 "customer_ip": "string",
 "dynamic_descriptor": "dynamic_descriptor",
 "merchant_reference": "string",

https://sandbox.omni.verifone.cloud
https://sandbox.omni.verifone.cloud/docs/api#operation/createCardTransaction
/docs/uk-gateway/payments_tokenization
/docs/uk-gateway/key_concepts_account

 "user_agent": "string",
}

If the transaction is authorized the response should contain the following field:

{
 ...
 "status": "SETTLEMENT_REQUESTED"
 ...
}

Account Verification ($0 Auth)

Action Account Verification
Description Verify that customer's card details are valid

Link to API
docs

https://sandbox.omni.verifone.cloud/docs/api#operation/createCardTransa…

Prerequisite
1

A tokenized card for the card field.

Prerequisite
2

An account with a card processor attached to it. The account ID will need to be used for the
account field.

Prerequisite
3

Check the connection page for the acquirer you are using for support of Account Verification
transactions and any exceptions regarding the dynamic descriptor, currency, customer
requirements or other requirements.

Account verification transaction works the same as a regular authorization with one small difference: The
amount needs to be set to 0.

Account verification does not have amount, so there is no money to be moved out of the customer's card, which
means that capture_now has to be set to false. Attempting to capture a previously processed account
verification transaction or sending it as a sale would fail.

Account verification transactions cannot handle 3DS data provided with them.

Post the following body to the /transaction endpoint:

{
 "account": "account.id",
 "amount": 0,
 "card": "card.id",
 "capture_now": false,
 "customer_ip": "string",
 "dynamic_descriptor": "dynamic_descriptor",
 "merchant_reference": "string",
 "user_agent": "string",
}

https://sandbox.omni.verifone.cloud/docs/api#operation/createCardTransaction
/docs/uk-gateway/payments_tokenization
/docs/uk-gateway/key_concepts_account

 Credentials on File (COF), storing credentials for a first time

Action Initial transaction storing credentials for first time
Description Process a payment, storing the shopper's credentials to be used in the future

Link to API
docs

https://sandbox.omni.verifone.cloud/docs/api#operation/createCardTransa…

Prerequisite
1

A tokenized card for the card field.

Prerequisite
2

An account with a card processor attached to it. The account ID will need to be used for the
account field.

Prerequisite
3

Check the connection page for the acquirer you are using for support of Credentials on File
transactions and any exceptions regarding the dynamic descriptor, currency, customer
requirements or other requirements.

A Credential on File transaction is a transaction in which a cardholder has explicitly authorised a card acceptor
to store the cardholder's account information for future use. COF transaction can be sent as Authorisation, Sale
or Account Verification. It is also possible to provide 3DS data to it. Flagging a transaction as initial COF is
done by providing an additional parameter recurring in the createCardTransaction POST. This parameter
indicates the type of contract and processing model to be used, which controls the way the stored credentials can
be used in the future. The schema for initial COF transaction is as:

recurring: {
 "contract": "string",
 "processing_model": "string"
}

After successfully processing such transaction, the response will contain an additional field reference under
the recurring object. This reference needs to be provided for all subsequent transactions in order to use the
credentials stored by this initial one. A reference will only be generated when the transaction is processed
successfully.

Usage

Business
model

Shopper
present

Transaction shopper_interaction contract processing_model CVV

Online
purchase

yes

Online
purchase where
shopper agrees
to store card
details for
future use

ecommerce ONE_CLICK COF optional

Subscriptions yes
Transaction to
sign up for a
subscription

ecommerce RECURRING SUBSCRIPTION optional

https://sandbox.omni.verifone.cloud/docs/api#operation/createCardTransaction
/docs/uk-gateway/payments_tokenization
/docs/uk-gateway/key_concepts_account

Business
model

Shopper
present

Transaction shopper_interaction contract processing_model CVV

Shopper
absent
transactions

yes

Transaction to
sign up for the
terms and
conditions of
later
subsequent
charges.

ecommerce RECURRING UNSCHEDULED_COF optional

Initial COF transactions can also be sent as shopper_interaction set to mail_order or
telephone_order.

Examples

COF
SUBSCRIPTION
UNSCHEDULED_COF

 Example 1: initial COF transaction, storing the credentials for future use. Request:

{
 "account": "account.id",
 "amount": 1234,
 "card": "card.id",
 "capture_now": false,
 "customer_ip": "string",
 "dynamic_descriptor": "dynamic_descriptor",
 "merchant_reference": "string",
 "user_agent": "string",
 "recurring": {
 "contract": "ONE_CLICK",
 "processing_model": "COF"
 }
}

 Response:

{
 "_id": "1234567",
 "account": "account.id",
 "amount": 1234,
 "card": "card.id",
 "capture_now": false,
 "customer_ip": "string",
 "dynamic_descriptor": "dynamic_descriptor",

 "merchant_reference": "string",
 "user_agent": "string",
 "recurring": {
 "contract": "ONE_CLICK",
 "processing_model": "COF",
 "reference": "1234567"
 }
}

Example 2: initial SUBSCRIPTION transaction, storing the credentials for future use. Request:

{
 "account": "account.id",
 "amount": 1234,
 "card": "card.id",
 "capture_now": false,
 "customer_ip": "string",
 "dynamic_descriptor": "dynamic_descriptor",
 "merchant_reference": "string",
 "user_agent": "string",
 "recurring": {
 "contract": "RECURRING",
 "processing_model": "SUBSCRIPTION"
 }
}

 Response:

{
 "_id": "9876556789",
 "account": "account.id",
 "amount": 1234,
 "card": "card.id",
 "capture_now": false,
 "customer_ip": "string",
 "dynamic_descriptor": "dynamic_descriptor",
 "merchant_reference": "string",
 "user_agent": "string",
 "recurring": {
 "contract": "RECURRING",
 "processing_model": "SUBSCRIPTION",
 "reference": "9876556789"
 }
}

 Example 3: initial UNSCHEDULED_COF transaction, storing the credentials for future use. Request:

{
 "account": "account.id",
 "amount": 1234,
 "card": "card.id",
 "capture_now": false,
 "customer_ip": "string",
 "dynamic_descriptor": "dynamic_descriptor",
 "merchant_reference": "string",
 "user_agent": "string",
 "recurring": {
 "contract": "RECURRING",
 "processing_model": "UNSCHEDULED_COF"
 }
}

Response:

{
 "_id": "87654321",
 "account": "account.id",
 "amount": 1234,
 "card": "card.id",
 "capture_now": false,
 "customer_ip": "string",
 "dynamic_descriptor": "dynamic_descriptor",
 "merchant_reference": "string",
 "user_agent": "string",
 "recurring": {
 "contract": "RECURRING",
 "processing_model": "UNSCHEDULED_COF",
 "reference": "87654321"
 }
}

 Credentials on File (COF), using previously stored credentials

Action Subsequent transaction with stored credentials
Description Process a transaction using previously stored shopper credentials

Link to API
docs

https://sandbox.omni.verifone.cloud/docs/api#operation/createCardTransa…

Prerequisite
1

A tokenized card for the card field.

Prerequisite
2

An account with a card processor attached to it. The account ID will need to be used for the
account field.

https://sandbox.omni.verifone.cloud/docs/api#operation/createCardTransaction
/docs/uk-gateway/payments_tokenization
/docs/uk-gateway/key_concepts_account

Action Subsequent transaction with stored credentials

Prerequisite
3

Check the connection page for the acquirer you are using for support of Credentials on File
transactions and any exceptions regarding the dynamic descriptor, currency, customer
requirements or other requirements.

COF transaction using previously stored credentials works the same way as regular regular Authorisation or
Sale. In the case that the shopper is present, 3DS data can also be provided. Flagging a transaction as subsequent
COF is done by providing shopper_interaction with value cont_auth and an additional parameter
recurring . This parameter is used to indicate the processing model and provide reference, which both need
to match the initially processed transaction.

{
 "shopper_interaction": "cont_auth",
 ...
 "recurring": {
 "processing_model": "string",
 "reference": "string"
 }
}

Usage

Business
model

Shopper
present

Transaction shopper_interaction contract processing_model CVV

Online
purchase

yes

Online purchase
where shopper uses
previously stored
credentials

cont_auth - COF optional

Subscriptions no
Subsequent
subscription
charge.

cont_auth - SUBSCRIPTION
not
used

Shopper absent
transactions

no

Subsequent charges
as agreed upon
during the sign-up
transaction.

cont_auth - UNSCHEDULED_COF
not
used

Examples

Subsequent COF
Subsequent SUBSCRIPTION
Subsequent UNSCHEDULED_COF

 Example 1: Subsequent COF sale transaction, using previously stored credentials

Subsequent COF transactions indicate that the shopper is present. This means that it is possible to provide CVV
and/or 3DS data for this transaction.

(given that an initial COF transaction was successfully processed as in Example 1 of Credentials on
File (COF), storing credentials for a first time)

Request:

{
 "account": "account.id",
 "amount": 1234,
 "card": "card.id",
 "customer_ip": "string",
 "dynamic_descriptor": "dynamic_descriptor",
 "merchant_reference": "string",
 "user_agent": "string",
 "shopper_interaction": "cont_auth",
 "recurring": {
 "processing_model": "COF",
 "reference": "1234567"
 }
}

 Response:

{
 "_id": "1234567",
 "account": "account.id",
 "amount": 1234,
 "card": "card.id",
 "customer_ip": "string",
 "dynamic_descriptor": "dynamic_descriptor",
 "merchant_reference": "string",
 "user_agent": "string",
 "shopper_interaction": "cont_auth",
 "recurring": {
 "processing_model": "COF",
 "reference": "1234567"
 }
}

 Example 2: Subsequent SUBSCRIPTION sale transaction, using previously stored credentials (given that an
initial SUBSCRIPTION transaction was successfully processed as in Example 2 of Credentials on File
(COF), storing credentials for a first time)

Request:

{
 "account": "account.id",
 "amount": 1234,
 "card": "card.id",
 "customer_ip": "string",
 "dynamic_descriptor": "dynamic_descriptor",
 "merchant_reference": "string",
 "user_agent": "string",
 "shopper_interaction": "cont_auth",
 "recurring": {
 "processing_model": "SUBSCRIPTION",
 "reference": "87654321"
 }
}

Response:

{
 "_id": "9876556789",
 "account": "account.id",
 "amount": 1234,
 "card": "card.id",
 "customer_ip": "string",
 "dynamic_descriptor": "dynamic_descriptor",
 "merchant_reference": "string",
 "user_agent": "string",
 "shopper_interaction": "cont_auth",
 "recurring": {
 "processing_model": "SUBSCRIPTION",
 "reference": "9876556789",
 }
}

 Example 3: Subsequent UNSCHEDULED_COF authorisation transaction, using previously stored credentials
(given that an initial UNSCHEDULED_COF transaction was successfully processed as in Example 3 of
Credentials on File (COF), storing credentials for a first time)

Request:

{
 "account": "account.id",
 "amount": 1234,
 "card": "card.id",
 "capture_now": false,
 "customer_ip": "string",

 "dynamic_descriptor": "dynamic_descriptor",
 "merchant_reference": "string",
 "user_agent": "string",
 "shopper_interaction": "cont_auth",
 "recurring": {
 "processing_model": "UNSCHEDULED_COF",
 "reference": "87654321"
 }
}

Response:

{
 "_id": "87654321",
 "account": "account.id",
 "amount": 1234,
 "card": "card.id",
 "capture_now": false,
 "customer_ip": "string",
 "dynamic_descriptor": "dynamic_descriptor",
 "merchant_reference": "string",
 "user_agent": "string",
 "shopper_interaction": "cont_auth",
 "recurring": {
 "processing_model": "UNSCHEDULED_COF",
 "reference": "87654321"
 }
}

