
https://verifone.cloud/docs/application-development-kit-version-47/pg_tec_programmers_guide
Updated: 07-Oct-2025

ADK-TEC Programmers Guide

This document is for programmers and developers who want to understand and use the ADK-TEC.

Audience

This guide provides all the information required for application developers to integrate and utilize the
functionality of the ADK-TEC.

Organization

This guide is organized as follows:

Introduction: Provides a summary of ADK-TEC.

Contactless Subcomponents: Provides an overview on contactless components, options and flows.

Getting Started: Presents an introduction in ADK-TEC usage.

Programming: Supplies ADK-TEC programming information.

System Setup and Requirements: Supplies information about required dependencies.

PP1000: Supplies information about pairing and PIN transfer with PP1000.

Troubleshooting: Gives solutions for possible issues in ADK-TEC.

Appendix: Links to related documents.

Introduction

ADK-TEC provides technology selection functionality. After starting technology selection you will be informed
of the first detected technology. Supported technologies are magnetic cards (requires ADK-MSR), chip cards
and contactless cards (requires ADK-EMV and ADK-NFC). Once a technology is detected the application can
perform a transaction using that technology.

/docs/application-development-kit-version-47/pg_tec_programmers_guide
pg_tec_programmers_guide#sec_tec_introduction
pg_tec_programmers_guide#sec_tec_ctls_overview
pg_tec_programmers_guide#sec_tec_getting_started
pg_tec_programmers_guide#sec_tec_programming
pg_tec_programmers_guide#sec_tec_system_setup_and_requirements
pg_tec_programmers_guide#sec_tec_pp1000
pg_tec_programmers_guide#sec_tec_troubleshooting
pg_tec_programmers_guide#sec_tec_appendix

To make use of ADK-TEC you need the following components:

tec.h
libtec.so

Additionally you need

msr.h from ADK-MSR
libmsr.so from ADK-MSR
EMV libraries from ADK-EMV
NFC libraries from ADK-NFC (only if you use NFC)

This is illustrated in the following image (omitting components from ADK-EMV and ADK-NFC):

tec_8h
msr_8h
./pg_sdi_users_guide
./pg_sdiclient_users_guide
./pg_sdiclient_users_guide

either perform the requested transaction,
perform the requested VAS/wallet processing,
or activates a card for low level L1 access by the application (ISO; MiFare, Felica, ...).

Standard Use Cases for MSR and (CT+CTLS) EMV transactions

MSR and CT activation and CTLS (Auto) EMV-Transaction

Beforehand the app has to set up the EMV ADK CTLS (with EMV_CTLS_SetupTransaction()).

App calls cts_StartSelection() with CTS_CHIP, CTS_MSR, and CTS_CTLS.

TEC component will:

Detect if a swipe appears and let the app know about this event so that the app can fetch track 2 data
Activate contact chip (depending on CTS_NO_POWERON) when a chip card is inserted and let the app
know about it
Do a complete EMV CTLS transaction when an EMV card is tapped and let the app know about it

App evaluates the TEC outcome:

If(MSR):

Read out track data and handle MSR transaction
else if (CT):

do transaction with help of EMV CT framework (EMV_CT_StartTransaction ...)
else if (CTLS):

call EMV_CTLS_ContinueOffline() to fetch result data from transaction

The CTLS txn is already through, card remove point was already reached inside TEC.

MSR and CT activation and CTLS NFC

MSR Read if a swipe appears and let the app know about it so that the app can fetch track 2 data
CT Activation if a chip card is inserted and let the app know about it
CTLS Activation if a card is in the field and let the app know the data from NFC-ADK

In this way the app can decide if it just wants to search for EMV/ISO cards or also wants to detect MiFare or
Felica or whatever is supported by NFC.

If this option is selected by the App TEC will use the NFC Poll function to perform technology detection.

On detection of a card via NFC Tech Discovery, TEC will report which type of card and then hand over control
to app. The App can e.g. on detection of a MiFare use the new NFC ADK commands for Authenticate, Read,
Write for handling the card, on detection of an EMV ISO it can use the EMV interface (using a proper EMV
activation if needed) to send ISO cards, on detection of Felica can handle Felica via the NFC ADK.

group___f_u_n_c___f_l_o_w#ga1a86c76dcf8fec6e97ead6cf8f2717ff
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#ga1073825ee49c63471bef39392d6df7e6
group___f_u_n_c___f_l_o_w#gaf23f6f87fe90619810470fad7d11f321

Typical use cases are:

a) EMV/ISO only is activated in TEC

No change, use EMV for detecting cards and once detected we have a proper EMV activation sequence already
in place. App uses EMV ADK subsequently to manage the EMV transaction or domestic transaprent ISO card
APDU access.

b) NFC only (currently Mifare/Felica/ISO) is activated in TEC

Use NFC only for detecting cards. Once detected report to app. App can use NFC ADK for handling the cards

NFC_Mifare_XXX for MiFare cards
NFC_Felica_Exchange for Felcia cards
NFC_APDU_Exchange for ISO cards

c) NFC AND EMV/ISO is activated

Use NFC for detecting cards. Once a card is detected:

TEC reports to app if MiFare or Felcia Card reported and use NFC ADK for handling it (see b)
Do EMV if EMV/ISO card is reported and use EMV ADK for handling it (see a)
if EMV preloaded: Do EMV automatically (do EMV conform activation)
If not let the app use EMV ISO interface to handle domestic schemes or allow the app to start an EMV
transaction after TEC

Supported use cases:

MiFare
Felica
NFC/ISO (use ISO API of NFC ADK and let NFC ADK activate the card)
EMV/ISO (use ISO API of EMV ADK and let EMV ADK activate the card)
EMV/AUTO (automatically perform EMV txn after EMV compliant ISO detection)

MSR and CT activation and CTLS VAS (Value Added Services, Wallets)

ADK-NFC supports EITHER Pass Through (MiFare, Felica) OR VAS. These are mutual exclusive from the
design of the NFC ADK. One of these can be combined with MSR, CT and/or EMV CTLS.

Supported use cases with the NFC wallet detection:

VAS detection only (if no EMV pre configured or EMV not detected)
VAS detection followed by EMV transaction
EMV transaction only (if no VAS pre configured or no VAS detected)

Dependencies from EMV and NFC are kept apart from each other. The flow is as follows:

App: SetupEMV(EMV params) by using EMV-ADK
App: SetupVAS(VAS params) by using NFC-ADK
App: Use TEC for technology selection
TEC: Detects VAS or EMV or MSR (or anything else) by using the API's of NFC, EMV CT, EMV CTLS
and MSR
TEC: If VAS is detected and VAS tells to continue with EMV (without parameter update for EMV): Do
EMV without returning to the app. (If VAS tells no EMV needed, return to app at this step)
App: Fetch EMV TXN outcome (if there was any) by using EMV-ADK
App: Fetch VAS outcome (if there was any) by using NFC-ADK or TEC response

a) VAS Only

(e.g. the app wants to check coupons and needs to change the EMV amount before continuing with EMV, update
EMV params needed) is configured

MSR Read if a swipe appears and let the app know about it so that the app can fetch track 2 data
CT Activation if a chip card is inserted and let the app know about it
NFC Wallet detection started and depending on the Wallet detection outcome

No VAS available/found/needed: Return to App with info 'CTLS detected' 'No VAS Data' 'EMV to
follow'
VAS detected --> do not EMV: Return to app with info 'CTLS detected' 'VAS Data available' No
EMV'

VAS detected --> to be followed by EMV: Return to app with info 'CTLS detected' 'VAS Data
available' 'EMV to follow'

b) VAS followed by EMV transaction

'MSR' and 'CT activation' and 'CTLS VAS processing followed by EMV transaction'

MSR Read if a swipe appears and let the app know about it so that the app can fetch track 2 data
CT Activation if a chip card is inserted and let the app know about it
NFC Wallet detection started and depending on the Wallet detection outcome

No VAS available/found/needed --> do EMV only: Will do EMV TXN automatically (disabling
card and do proper EMV Activation sequence within EMV) and return to App with info 'CTLS
detected' 'EMV performed' 'No VAS Data'
VAS detected --> do not do EMV: Return to app with info 'CTLS detected' 'EMV not performed'
'VAS Data available'
VAS detected --> to be followed by EMV: Will do EMV TXN automatically (disabling card and do
proper EMV Activation sequence within EMV) and return to App with info 'CTLS detected' 'EMV
performed' 'VAS Data available'

Compared to an EMV transaction without VAS pre-processing the following steps have to be added
on apps side:

Call

NFC_Terminal_Config(), NFC_VAS_UpdateConfig(), NFC_VAS_PreLoad()

to configure VAS/Wallet processing before handing control over to TEC
Once NFC or VAS/Wallet processing is activated, TEC will respond with data in TLV format.

Evaluate the TEC response for (additional/optional) VAS Data and use it for VAS processing.

Reference: TEC result data tags
The processing for EMV remains unchanged.

Getting Started

The following two examples show how to use technology selection (ADK-TEC):

Sample1: Application using ADK-TEC without callback

#include "tec/tec.h"#include "msr/msr.h"#include "EMV_CT_Interface.h"
#include "EMV_CTLS_Interface.h".... a) MSR, CT, CTLS EMV only
// initialize:EMV_CT_InitFramework(...);EMV_CTLS_InitFramework(...);// setup transactionEMV_CTLS_SetupTransaction(...);// start technology selection without callback:if (cts_StartSelection(CTS_CHIP|CTS_CTLS|CTS_MSR, 10, NULL, NULL, NULL, 0) == CTS_OK) b) MSR, CT, CTLS EMV + WALLET (Remark: NFC ADK supports EITHER VAS processing OR PassTrough processing, mutual exclusive)unsigned char options[2] = {0};// initialize:EMV_CT_InitFramework(...);EMV_CTLS_InitFramework(...);NFC_Client_Init(...);NFC_Terminal_Config(...);NFC_VAS_UpdateConfig(...);cts_SetOptions(...); // to set VAS appID// setup transaction:EMV_CTLS_SetupTransaction(...);NFC_VAS_PreLoad(...);options[1] = CTS_VAS_ENABLE;// start technology selection without callback:if (cts_StartSelection(CTS_CHIP|CTS_CTLS|CTS_MSR, 10, NULL, NULL, options, 2) == CTS_OK) c) MSR, CT, CTLS EMV + NFC Pass Through (Remark: NFC ADK supports EITHER VAS processing OR PassTrough processing, mutual exclusive)unsigned char options[16] = {0};// initialize:EMV_CT_InitFramework(...);EMV_CTLS_InitFramework(...);NFC_Client_Init(...);// setup transaction:EMV_CTLS_SetupTransaction(...);options[1] = CTS_NFC_ENABLE;options[1] |= CTS_EMV_AFTER_NFC_ISO; // optionaloptions[15] = 0x0F; // select card types // start technology selection without callback:if (cts_StartSelection(CTS_CHIP|CTS_CTLS|CTS_MSR, 10, NULL, NULL, options, 16) == CTS_OK){ unsigned char technology; unsigned char tlv_response = false; unsigned char data[100]; unsigned short data_len = sizeof(data); int ret; // wait for result: while ((ret = cts_WaitSelection(&technology, data, data_len, 100)) == CTS_IN_PROGRESS) { // if abort request arrived (from GUI, ECR, ...) stop technology selection: if (aborted) cts_StopSelection(); } switch (ret) { case CTS_OK: // technology detected if(technology & CTS_DATA_TLV) { // clear TLV response flag technology &= ~CTS_DATA_TLV; tlv_response = true; } switch (technology) { case CTS_MSR: MSR_GetData(...); MSR_Deactivate(...); break; case CTS_CHIP: EMV_CT_ContinueOffline(...); EMV_CT_ContinueOnline(...); // wait for removal of chip card cts_WaitCardRemoval2(10); break; case CTS_CTLS: if (tlv_response) { // Evaluate the response tags for NFC Pass Through, NFC VAS processing, and EMV processing if configured in b) or c) above. } else { EMV_CTLS_ContinueOffline(...); EMV_CTLS_ContinueOnline(...); } break; } break; case CTS_TIMEOUT: // no technology detected break; case CTS_STOPPED: // technology selection aborted break; default: // error (see cts_WaitSelection() for details about all possible return values) break; }}else{ EMV_CTLS_Break();}....

Sample2: Application using ADK-TEC with callback

#include <pthread.h>#include "tec/tec.h"#include "msr/msr.h"#include
"EMV_CT_Interface.h"#include "EMV_CTLS_Interface.h"
....static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;static pthread_cond_t condition = PTHREAD_COND_INITIALIZER; static unsigned char technology;static unsigned char data[
100];static unsigned short data_len = sizeof(data);static int
 ret; static void tecselCallback(void *data){ pthread_mutex_lock(&mutex); ret = cts_WaitSelection(&technology, data, data_len,
0
) pthread_cond_signal(&condition); pthread_mutex_unlock(&mutex);} a) MSR, CT, CTLS EMV only
// initialize:EMV_CT_InitFramework(...);EMV_CTLS_InitFramework(...);// setup transactionEMV_CTLS_SetupTransaction(...);// start technology selection with callback:if (cts_StartSelection(CTS_CHIP|CTS_CTLS|CTS_MSR, 10, &tecselCallback, NULL, NULL, 0) == CTS_OK) b) MSR, CT, CTLS EMV + WALLET (Remark: NFC ADK supports EITHER VAS processing OR PassTrough processing, mutual exclusive)unsigned char options[2] = {0};// initialize:EMV_CT_InitFramework(...);EMV_CTLS_InitFramework(...);NFC_Client_Init(...);NFC_Terminal_Config(...);NFC_VAS_UpdateConfig(...);cts_SetOptions(...); // to set VAS appID// setup transaction:EMV_CTLS_SetupTransaction(...);NFC_VAS_PreLoad(...);options[1] = CTS_VAS_ENABLE;// start technology selection with callback:if (cts_StartSelection(CTS_CHIP|CTS_CTLS|CTS_MSR, 10, &tecselCallback, NULL, options, 2) == CTS_OK) c) MSR, CT, CTLS EMV + NFC Pass Through (Remark: NFC ADK supports EITHER VAS processing OR PassTrough processing, mutual exclusive)unsigned char options[16] = {0};// initialize:EMV_CT_InitFramework(...);EMV_CTLS_InitFramework(...);NFC_Client_Init(...);// setup transaction:EMV_CTLS_SetupTransaction(...);options[1] = CTS_NFC_ENABLE;options[1] |= CTS_EMV_AFTER_NFC_ISO; // optionaloptions[15] = 0x0F; // select card types // start technology selection with callback:if (cts_StartSelection(CTS_CHIP|CTS_CTLS|CTS_MSR, 10, &tecselCallback, NULL, options, 16) == CTS_OK){ unsigned char tlv_response = false; pthread_mutex_lock(&mutex); // wait for callback: pthread_cond_wait(&condition, &mutex); pthread_mutex_unlock(&mutex); switch (ret) { case CTS_OK: // technology detected if(technology & CTS_DATA_TLV) { // clear TLV response flag technology &= ~CTS_DATA_TLV; tlv_response = true; } switch (technology) { case CTS_MSR: MSR_GetData(...); MSR_Deactivate(...); break; case CTS_CHIP: EMV_CT_ContinueOffline(...); EMV_CT_ContinueOnline(...); // wait for removal of chip card cts_WaitCardRemoval2(10); break; case CTS_CTLS: if (tlv_response) { // Evaluate the response tags for NFC Pass Through, NFC VAS processing, and EMV processing if configured in b) or c) above. } else { EMV_CTLS_ContinueOffline(...); EMV_CTLS_ContinueOnline(...); } break; } break; case CTS_TIMEOUT: // no technology detected break; case CTS_STOPPED: // technology selection aborted break; default: // error (see cts_WaitSelection() for details about all possible return values) break; }}else{ EMV_CTLS_Break();}....

Link your application with libtec.so and load the shared library libtec.so on your device. If you don't want to
periodically call cts_WaitSelection() you can supply a callback function to cts_StartSelection(). This callback
function is called exactly once after the technology selection has finished (due to detected technology, timeout,
or error). After this callback function has been called (or even withing the callback function) you can obtain the
result by cts_WaitSelection() setting its timeout to 0. A callback function is supported for card removal detection
as well (see cts_WaitCardRemoval()).

Programming

titusstubs_8cpp#ad0a349a0904d698fea9fffa004cb3eb3
titusstubs_8cpp#a8816583d91da702a6c7e2143ed68f7d9
titusstubs_8cpp#a8ee28a30cc5757bdd4d9ac413fe7ef17
group___t_e_c___d_a_t_a___t_a_g_s
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
tec_8h#a8db288b6803c1fba534d94a99f1b646b

Programming and API Principles

The API consists of the following functions:

tec.h tecclient.h
cts_ConfigureServer()

cts_Version() cts_Version()

cts_SetTraceCallback() cts_SetTraceCallback()

cts_SetOptions() cts_SetOptions()

cts_StartSelection() cts_StartSelection()

cts_StopSelection() cts_StopSelection()

cts_WaitSelection() cts_WaitSelection()

cts_RemoveTechnologies() cts_RemoveTechnologies()

cts_AddTechnologies()

cts_WaitCardRemoval() cts_WaitCardRemoval()

cts_WaitCardRemoval2() cts_WaitCardRemoval2()

pintransfer_Pairing()

pintransfer_MovePin()

ped_SetSendRcvCb()

ped_Pairing()

ped_MovePin()

cts_SetNotificationCallback()

Some notes regarding the different technologies

In general only one of CTS_MSR, CTS_CHIP, CTS_CTLS is detected but in special cases (see Detecting MSR
and CTLS simultaneously and Special behavior on UX devices) two technologies can be detected at once.

CTS_MSR: If you want to use the magnetic card reader, you do not need to call MSR_Activate() before
starting technology selection. ADK-TEC will do this for you. After technology selection finishes and the
detected technology is not CTS_MSR, MSR_Deactivate() is internally called as well. So you do not need
to do this either. Only if the detected technology is CTS_MSR, ADK-MSR is still activated to allow the
application to fetch the magnetic card data with MSR_GetData(). After this you shall call
MSR_Deactivate(). If using an UX device MSR_Deactivate() shall be called as well if technology
selection detects CTS_CHIP or returns CTS_NO_CHIP (see Special behavior on UX devices).
CTS_CHIP: If you want to use the chip card reader, you should first call EMV_CT_InitFramework() to
enable the contact part of ADK-EMV. After technology selection detects a chip card the card is already
powered up (except if you set option CTS_NO_POWERON) and the application can call
EMV_CT_ContinueOffline().
CTS_CTLS: (EMV only, see below for NFC)

Card detection only (option CTS_PURE_CARD_DETECTION)

ADK-TEC activates the card by means of EMV_CTLS_SmartReset().

tec_8h
tecclient_8h
tecclient_8h#a87c4747edb4fce8ed46ca48e2b922ee4
tec__common_8h#a68272ed65703130d4858d9c28c21f9b9
tec__common_8h#a68272ed65703130d4858d9c28c21f9b9
tec__common_8h#a90770d44c55c14fa472396c74fec6052
tec__common_8h#a90770d44c55c14fa472396c74fec6052
tec_8h#aa237be1f0249503d0b959d3800f1ee34
tecclient_8h#aa4bf8ba6b5191d7ac56dae17e6098da9
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
tecclient_8h#a4f02e5af6845a51817e35651dd16adb3
tec_8h#acaf2d75d1b584ae97ff9ee4da47cee38
tecclient_8h#a33cda11ca78083543d699a58901e9e97
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
tecclient_8h#a67f7abe7e84176f3c52382ae8b96abb3
tec_8h#a8569782d27f43e5d88cef3575a5d12c6
tecclient_8h#ae59a4b25985aad12366bef50372beaef
tec_8h#aa60922ab5b40a033ac85a36e8022cafa
tec_8h#a8db288b6803c1fba534d94a99f1b646b
tecclient_8h#a0bfebb16a90250aef766fda3c4c48ef9
tec_8h#a92ab7780df1f8150c6d8a9b3ab3163bf
tecclient_8h#a3e84f2d1a609543ed47c601c3dc7c842
pintransfer_8h#a7ded82d2598999171afbd0f2bff79702
pintransfer_8h#a68a29ce6f9a6e795e9ba2e56be72e5a8
tec_2export_2tec_2ped_8h#aa093da583e918cfb6dd8e152c39af3bc
tec_2export_2tec_2ped_8h#a124ea72634b37bdf5d09ce5e0869ca55
tec_2export_2tec_2ped_8h#ab4792fd3cacefd42f8f7bf365e779484
tec_8h#ada083dc0f484d99ab24df79ed5f145c9
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
pg_tec_programmers_guide#subsubsec_tec_msr_after_ctls
pg_tec_programmers_guide#subsubsec_tec_msr_after_ctls
pg_tec_programmers_guide#subsubsec_tec_special_ux_handling
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
msr_8h#a1e92fd29720fecbf50da24a30c7b512f
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
msr_8h#aac28b2c3771f8221fc26a35f0fd6d0f8
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
msr_8h#ad00fdde838f486d43be689650ab58d43
msr_8h#aac28b2c3771f8221fc26a35f0fd6d0f8
msr_8h#aac28b2c3771f8221fc26a35f0fd6d0f8
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___r_e_t_u_r_n___c_o_d_e_s#ga058dc7a7d6d6562dac8171ca86f5b5c0
pg_tec_programmers_guide#subsubsec_tec_special_ux_handling
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#ga1073825ee49c63471bef39392d6df7e6
group___f_u_n_c___f_l_o_w#ga8be6df6babc587a19f63f284b2a6f006
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#gaeff0a0e1b335597ea1ec0781f15edb08
group___f_u_n_c___i_c_c#gae2c93f30f24ceb94c930a7cae2b36116

So calling application can continue to work with the card by EMV_CTLS_SmartISO().

And finally it shall call EMV_CTLS_SmartPowerOff() to switch off the RF field.

In case an EMV transaction is desired the EMV_CTLS_SmartPowerOff() has to be called.

And then EMV_CTLS_SetupTransaction() and EMV_CTLS_ContinueOffline().
EMV transaction

First call EMV_CTLS_InitFramework() and prior to each technology selection you have to call
EMV_CTLS_SetupTransaction().

ADK-TEC will internally call EMV_CTLS_ContinueOffline() to detect the card and perform the
transaction.

If a contactless card is detected, the application can call EMV_CTLS_ContinueOffline() again to
obtain the transaction results.

If no contactless card is detected, ADK-TEC internally calls EMV_CTLS_Break().

One additional remark regarding EMV_CTLS_SetupTransaction(): If ADK-TEC is used, you must
not set parameter ServerPollTimeout because in this case ADK-TEC takes care of polling.

Processing NFC with ADK-TEC

This is the general routine used in ADK-TEC for detecting and processing CTLS cards (pseudocode), it should
help you to understand how ADK-TEC behaves depending on the various CTLS options.

[0] if both CTS_NFC_ENABLE and CTS_VAS_ENABLE are set: exit end[1
] if CTS_NFC_ENABLE is set: call NFC_PT_Polling() if
 ISO A/B card found and CTS_EMV_AFTER_NFC_ISO is set: goto [3
] end exit end[2] if CTS_VAS_ENABLE is set: call
 NFC_VAS_Activate() if VAS_DO_PAY is returned: goto [3
] end exit end[3] if CTS_PURE_CARD_DETECTION is set
: call EMV_CTLS_SmartReset() else call
 EMV_CTLS_ContinueOffline() end

If it is possible that EMV_CTLS_ContinueOffline() is called by ADK-TEC, application has to call
EMV_CTLS_SetupTransaction() before starting technology selection. If ADK-TEC detects a card with
NFC_PT_Polling() and no subsequent EMV transaction is started, ADK-TEC keeps the RF field on to allow the
application to communicate with this card. In this case the application has to call NFC_PT_FieldOff() and
NFC_PT_Close() afterwards. Furthermore the first CTLS LED is left on by ADK-TEC in this case. The
application generally wants it to shine while communicating with the card or even wants to switch on further
LEDs. So as soon as the application has finished the transaction, it needs to switch off the LEDs or restart idle
blinking.

Detecting MSR and CTLS simultaneously

group___f_u_n_c___i_c_c#gafbcdb0278723b9629eb7c12532119e2d
group___f_u_n_c___i_c_c#gadd0716253a50b2791ac4e2a1627d1e8d
group___f_u_n_c___i_c_c#gadd0716253a50b2791ac4e2a1627d1e8d
group___f_u_n_c___f_l_o_w#ga1a86c76dcf8fec6e97ead6cf8f2717ff
group___f_u_n_c___f_l_o_w#gaf23f6f87fe90619810470fad7d11f321
group___f_u_n_c___f_l_o_w#ga1a86c76dcf8fec6e97ead6cf8f2717ff
group___f_u_n_c___f_l_o_w#gaf23f6f87fe90619810470fad7d11f321
group___f_u_n_c___f_l_o_w#gaf23f6f87fe90619810470fad7d11f321
group___f_u_n_c___f_l_o_w#ga2b4820be53959b56fb7f672bd54f4e63
group___f_u_n_c___f_l_o_w#ga1a86c76dcf8fec6e97ead6cf8f2717ff
group___f_u_n_c___f_l_o_w#gaf23f6f87fe90619810470fad7d11f321
group___f_u_n_c___f_l_o_w#ga1a86c76dcf8fec6e97ead6cf8f2717ff
titusstubs_8cpp#aa1e541259f194621834060bf770b717b
titusstubs_8cpp#a65c5ac372de4d71a8154f61b820abaf0
titusstubs_8cpp#a00d4921f4a21667ae4cddb317ffc04a5

After CTS_CTLS has been detected technology selection can wait a certain amount of time for CTS_MSR
before returning the result to the application. If a magnetic card is swiped within this period of time technology
selection will return CTS_CTLS|CTS_MSR as technology. The timeout can be configured by the options
parameter of cts_StartSelection().

Special behavior on UX devices

When using an UX device it is recommended to activate the MSR UX enhancements:

unsigned char options[] = { MSR_UX_ENHANCEMENTS };MSR_SetOptions(options, sizeof(options));

This has to be done only once, before the first call of cts_StartSelection(). These enhancements will prevent
MSR from reading the magnetic card on insertion. Technology selection will behave as follows:

If a chip card is inserted CTS_CHIP will be detected but in contrast to other devices MSR_Deactivate()
will not be called internally. This is to avoid that MSR data from card removal gets lost. So if the contact
transaction fails or application does not want to do contact transaction, it is able to call MSR_GetData() to
obtain the MSR data. If there is no MSR data and the card is still inserted, the application can try again to
read MSR data after card removal.
If a card without chip is inserted, technology selection will normally return CTS_NO_CHIP. In case of
UX the application is able to set a timeout to cts_StartSelection(). Technology selection waits for this
amount of time for MSR data from card removal. If there is MSR data CTS_MSR will be detected, if not
CTS_NO_CHIP is returned. In the latter case application can initiate card removal and after that call
MSR_GetData().

In both cases (CTS_CHIP detected or CTS_NO_CHIP returned) MSR_Deactivate() is not internally called, so
application has to do this manually after optional call of MSR_GetData().

If the MSR UX enhancements are not activated, the former remarks are valid as well. Additionally it is possible
that technology selection detects both CTS_MSR and CTS_CHIP in parallel.

System Setup and Requirements

Compiler and Linker Settings

include tec.h and link libtec.so

libtec requires libmsr.

Hardware

ADK-TEC is hardware platform agnostic and supports installation on V/OS and VOS2 terminals.

Software

ADK-TEC is designed to be platform agnostic and will be supported on V/OS and VOS2 terminal operating
systems.

group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
msr_8h#aac28b2c3771f8221fc26a35f0fd6d0f8
msr_8h#ad00fdde838f486d43be689650ab58d43
group___t_e_c___r_e_t_u_r_n___c_o_d_e_s#ga058dc7a7d6d6562dac8171ca86f5b5c0
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
group___t_e_c___r_e_t_u_r_n___c_o_d_e_s#ga058dc7a7d6d6562dac8171ca86f5b5c0
msr_8h#ad00fdde838f486d43be689650ab58d43
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___r_e_t_u_r_n___c_o_d_e_s#ga058dc7a7d6d6562dac8171ca86f5b5c0
msr_8h#aac28b2c3771f8221fc26a35f0fd6d0f8
msr_8h#ad00fdde838f486d43be689650ab58d43
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
tec_8h

Deliverables and Deployment

Packages delivered (x - version number digit):

Package name Description
tec-doc-x.x.x-xx.zip Documentation

tec-vos-dev-x.x.x-xx.zip VOS development package, to be installed in PC build environment

tec-vos2-dev-x.x.x-xx.zip VOS2 development package, to be installed in PC build environment

PP1000

Pairing and PIN transfer with PP1000

ADK-TEC is capable of performing pairing a countertop device (CTP) with a PP1000 device and transferring
the PIN entered at the PP1000 into the vault of the countertop device. On the PP1000 you only need to install the
current AQUILA version, no ADK-TEC component is running on the PP1000. The application running on the
CTP needs to include the header file ped.h which is provided by ADK-TEC. Within this file the three functions
ped_SetSendRcvCb(), ped_Pairing(), and ped_MovePin() are declared. If you call one of these functions you
have to additionally install the library libPP1000.so on the CTP. This library is shipped together with ADK-TEC.
ped_Pairing() pairs the two devices. The actual pairing is only to be done once. However, if one of the devices is
paired with a third device in between, the devices must be repaired. ped_Pairing() first checks if the two devices
are successfully paired and performs the pairing only if this is necessary.

If the pairing is successful, a PIN can be transferred from PP1000 to CTP. The function ped_MovePin() does not
collect the PIN on the PP1000, so the PIN entry must be triggered by the application. It can directly send the
commands to the PP1000 or use the function pp1000_acceptPin() which is provided by libPP1000. After the PIN
has been entered, the PIN can be transferred into the vault of the CTP by calling ped_MovePin(). If this is
successfully done, the application can proceed as usual, e.g. call EMV_CT_Send_PIN_Offline() if this is an
offline PIN.

The communication between PP1000 and CTP has to be handled on application level. Both ADK-TEC and
PP1000 lib are platform independent and do not have communication built in. The application has to call either
ped_SetSendRcvCb() (provided by ADK-TEC) or pp1000_registerComs() (provided by PP1000 lib) to set
functions that send and receive data to/from the PP1000. So the application can freely decide which
communication method it wants to use, e.g. you may use ADK-COM or directly call OS functions.

Troubleshooting

Frequently Asked Questions

Q: cts_WaitSelection->timeout_msec: What is the purpose of this timeout if compare with cts_StartSelection-
>timeout_sec? Provide use cases.

tec_2export_2tec_2ped_8h#aa093da583e918cfb6dd8e152c39af3bc
tec_2export_2tec_2ped_8h#a124ea72634b37bdf5d09ce5e0869ca55
tec_2export_2tec_2ped_8h#ab4792fd3cacefd42f8f7bf365e779484
tec_2export_2tec_2ped_8h#a124ea72634b37bdf5d09ce5e0869ca55
tec_2export_2tec_2ped_8h#a124ea72634b37bdf5d09ce5e0869ca55
tec_2export_2tec_2ped_8h#ab4792fd3cacefd42f8f7bf365e779484
tec_2export_2tec_2ped_8h#ab4792fd3cacefd42f8f7bf365e779484
group___f_u_n_c___f_l_o_w#ga895cb054c344d011e9e3c6acc4aadafe
tec_2export_2tec_2ped_8h#aa093da583e918cfb6dd8e152c39af3bc

A: cts_StartSelection->timeout_sec is the timeout for the whole technology selection process, e.g. 30 seconds
might be reasonable value. cts_WaitSelection->timeout_msec is the timeout for the cts_WaitSelection()
function. It blocks and returns only if the timeout expires (in this case CTS_IN_PROGRESS is returned) or a
result is available (something != CTS_IN_PROGRESS is returned). The timeout value to use here depends on
your application design. If you have set a callback function to cts_StartSelection(), this callback is invoked as
soon as a result is available. So you have to call cts_WaitSelection() exactly once after the callback is invoked,
set timeout=0 (waiting makes no sense because you know that a result is available) If you do not want to use
callback function you can call cts_WaitSelection() with different timeout values. If you have set timeout in
cts_StartSelection() to 30 seconds, the easiest thing to do is set cts_WaitSelection->timeout_msec to 35000 ms
(maybe even longer if you set options[8..9] because this may prolongate the technology selection). Then you
have to call cts_WaitSelection() only once, it blocks and returns as soon as a result is available. This works of
course only if cts_StartSelection->timeout_sec does not exceed ~60 seconds. If you set cts_WaitSelection-
>timeout_msec to smaller values you have to call the function in a loop until a result (something !=
CTS_IN_PROGRESS) is returned. This makes sense if you want to do other things in the same thread while
waiting for result of technology selection, e.g. you may want to call cts_StopSelection() if abort request arrived
from GUI or ECR. So in this case the timeout depends on the frequency with that you want to do the other
things, e.g. a timeout of 0 is possible but will lead to high system load wheras a timeout of 100ms seems
reasonable.

Q: Some time ago, upon reviewing our test logs, you pointed out that we should not call the API
MSR_Activate() if next we start the selection with the API cts_StartSelection() because the latter activates the
reader by itself. And what about the scenario when we want to establish the MSR callback and then use the
selection? Here, MSR_Activate() is the only way to establish such a callback. Is this a legal use case to use
simultaneously the MSR callback and the selection which, in turn, may have its own callback?

A: No, this is not a legal use case. You should not establish the MSR callback if you use technology selection.
This is confusing and not necessary anyway. If MSR data is available, technology selection will finish, so you
get the information from TEC, no need to set MSR callback. If you even call MSR_GetData() upon receiving
MSR callback, TEC would most likely not be able to detect that MSR data is available and continue waiting for
technology (TEC calls MSR_DataAvailable() and as soon as MSR_GetData() is called, the former will return 'no
data available'). So please do not do anything like this.

Logging

You have two options to enable logging, choose one of them (if you think this is helpful, you could actually use
both at once):

Register a trace callback function with cts_SetTraceCallback().
Use ADK-LOG: Configure logging channel "TEC" by means of log control panel.

Appendix

Appendix is empty.

tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
tec_8h#acaf2d75d1b584ae97ff9ee4da47cee38
msr_8h#a1e92fd29720fecbf50da24a30c7b512f
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
msr_8h#a1e92fd29720fecbf50da24a30c7b512f
msr_8h#ad00fdde838f486d43be689650ab58d43
msr_8h#a8096fa193f035eb4b80673260d720477
msr_8h#ad00fdde838f486d43be689650ab58d43
tec__common_8h#a90770d44c55c14fa472396c74fec6052

