
https://verifone.cloud/docs/application-development-kit-version-48/pg_tec_programmers_guide
Updated: 13-Jun-2025

ADK-TEC Programmers Guide

This document is for programmers and developers who want to understand and use the ADK-TEC.

Audience

This guide provides all the information required for application developers to integrate and utilize the
functionality of the ADK-TEC.

Organization

This guide is organized as follows:

Introduction: Provides a summary of ADK-TEC.

Use Cases: Presents typical flows.

Getting Started: Presents an introduction in ADK-TEC usage.

Programming: Supplies ADK-TEC programming information.

System Setup and Requirements: Supplies information about required dependencies.

PP1000: Supplies information about pairing and PIN transfer with PP1000.

Troubleshooting: Gives solutions for possible issues in ADK-TEC.

Appendix: Links to related documents.

Introduction

ADK-TEC provides technology selection functionality. Supported technologies are

Magstripe cards
EMV contact chip cards
EMV contactless cards and mobile phones
Contactless NFC cards (Mifare, Felicy, ISO, ...)
Contactless Value Added Service (VAS) solutions

/docs/application-development-kit-version-48/pg_tec_programmers_guide
pg_tec_programmers_guide#sec_tec_introduction
pg_tec_programmers_guide#sec_tec_use_cases
pg_tec_programmers_guide#sec_tec_getting_started
pg_tec_programmers_guide#sec_tec_programming
pg_tec_programmers_guide#sec_tec_system_setup_and_requirements
pg_tec_programmers_guide#sec_tec_pp1000
pg_tec_programmers_guide#sec_tec_troubleshooting
pg_tec_programmers_guide#sec_tec_appendix

To make use of ADK-TEC you need the following components:

tec.h
libtec.so

Additionally you need

ADK-MSR, see ADK-MSR Programmers Guide
ADK-EMV, see

ADK-EMV Contact Programmers Guide
ADK-EMV Contactless Programmers Guide

ADK-NFC, see ADK-NFC Programmers Guide

Flow Overview

On terminal startup the application needs to setup the components (see below picture, dashed lines):

Package name Description
tec-doc-x.x.x-xx.zip Documentation

ADK-MSR ADK-EMV Contact ADK-EMV Contactless ADK-NFC
ADK-TEC
(black line)

MSR_SetOptions()
if desired

EMV_CT_Init_Framework() EMV_CTLS_Init_Framework() NFC_Client_Init()
cts_SetOptions()
if desired

EMV_CT_SetTermData() EMV_CTLS_SetTermData() NFC_Terminal_Config()

EMV_CT_SetAppliData() EMV_CTLS_SetAppliDataSchemeSpecific() NFC_VAS_UpdateConfig()

EMV_CT_StoreCAPKey() EMV_CTLS_StoreCAPKey()

Transaction flow:

Application prepares components (dashed lines):
ADK-EMV Contactless

tec_8h
./pg_msr_programmers_guide
./pg_emv_contact_users_guide
./pg_emv_contactless_users_guide
./pg_nfc_users_guide
msr_8h#ac3c6f568aa57690a8b369936fc362c2a
group___f_u_n_c___i_n_i_t#ga514e39585c5a6b79632ac317593ff592
group___f_u_n_c___i_n_i_t#ga63240773908b46180eeec866ef33f93f
sdi__nfc_8h#a7a9419cd6aa7aa9185fb249ce761ae0f
tec_8h#aa237be1f0249503d0b959d3800f1ee34
group___f_u_n_c___c_o_n_f#ga351c2deba9865081c314d818463f20c9
group___f_u_n_c___c_o_n_f#gac5ce9781bba083028538f9e77c2d58f3
sdi__nfc_8h#a86d1953748c0d7e6b9e621c2a36dd8e9
group___f_u_n_c___c_o_n_f#ga73ca1735defbb65a1aae2ead1de70233
group___f_u_n_c___c_o_n_f#gadc7f2eba5fd3e941d0ddb65a936a0776
sdi__nfc_8h#aade0ed84b10cb0108216011ba8a30993
group___f_u_n_c___c_o_n_f#gade5b2bbc6ab46c4b7d9efa991b696ad2
group___f_u_n_c___c_o_n_f#ga3e03f6dd283e873cbcd6b8e4bb78f09a

if not CTS_PURE_CARD_DETECTION: EMV_CTLS_SetupTransaction()
ADK-NFC if VAS desired: NFC_VAS_PreLoad()

Application starts card detection
invoke cts_StartSelection() (black line)
ADK-TEC starts a thread to poll the involved components (solid blue lines)

User swipes, inserts, or taps a card (or mobile phone)
ADK-TEC gets notification about this event (solid blue lines)

ADK-TEC signals card detection to the application (black line)
Application completes the transaction (dashed lines)

if a magstripe card was swiped:
use ADK-MSR functions to fetch the read data

if a card was inserted:
use ADK-EMV Contact to make the transaction

if a card (or mobile phone) was tapped:
if CTLS EMV is signaled:

transaction was already done
use ADK-EMV Contactless to fetch the results

if CTLS NFC or VAS is signaled:
use ADK-NFC to realize the desired APDUs
if desired (and possible): do EMV transaction by means of ADK-EMV Contactless

Android

In Android the ADK-TEC is hidden inside SDI. So application has to use the "Card Detection (23-01)" from
ADK-SDI Programmers Guide.

VOS3

In VOS3 ADK-TEC is accessible through SDI. The ADK-TEC-interface is rebuild in ADK-SDI-Client
Programmers Guide.

Two-Piece Solution

Former Two-Piece Solution with Client/Server architecture for MSR, TEC, ... is not supported anymore.

SDI EPP has to be used instead (see ADK-SDI Programmers Guide).

Use Cases

Magstripe and EMV Contact, on Contactless EMV and transparent ISO APDU

Requirement:

All three technologies shall be detected: Magstripe Card Swipe, Contact Chipcard Insertion, Contactless Card (or
Mobile Phone) Tap.

On Contactless interface an EMV payment shall be done.

group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#gaeff0a0e1b335597ea1ec0781f15edb08
group___f_u_n_c___f_l_o_w#ga1a86c76dcf8fec6e97ead6cf8f2717ff
sdi__nfc_8h#a071c33860fb2cf846a1466edf5bedfb7
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
./pg_sdi_users_guide
./pg_sdiclient_users_guide
./pg_sdiclient_users_guide
./pg_sdi_users_guide

Flow (see below diagram):

If not CTS_PURE_CARD_DETECTION: Before EVERY start the application has to set up EMV Contactless
(call EMV_CTLS_SetupTransaction()).

To start technology selection the application calls cts_StartSelection() with CTS_CHIP, CTS_MSR, and
CTS_CTLS.

TEC component will start a thread to poll for swipe, insert or tap.

Once a card (or mobile phone) is detected the application gets the result by means of cts_WaitSelection().

Parameter usedTechnology informs which technology is used:

1. CTS_MSR: A magnetic card was swiped.

Application has to read the magstripe data (with help of ADK-MSR Programmers Guide) and process
transaction.

2. CTS_CHIP: A contact chip card was inserted.

Chip may already be activated (depending on CTS_NO_POWERON).

Application has to execute the chip transaction by means of ADK-EMV Contact Programmers Guide.
3. CTS_CTLS: A contactless card or mobile phone was tapped (see ADK-EMV Contactless Programmers

Guide).
if CTS_PURE_CARD_DETECTION:

Chip card was activated.

Application can communicate with chip by means of EMV transparent commands (
EMV_CTLS_SmartISO() and others).

And may do a EMV transaction starting with EMV_CTLS_SetupTransaction().
else:

The complete EMV transaction was already done.

The application has to fetch the results with EMV_CTLS_ContinueOffline().

group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#gaeff0a0e1b335597ea1ec0781f15edb08
group___f_u_n_c___f_l_o_w#ga1a86c76dcf8fec6e97ead6cf8f2717ff
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
./pg_msr_programmers_guide
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#ga1073825ee49c63471bef39392d6df7e6
./pg_emv_contact_users_guide
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
./pg_emv_contactless_users_guide
./pg_emv_contactless_users_guide
group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#gaeff0a0e1b335597ea1ec0781f15edb08
group___f_u_n_c___i_c_c#gafbcdb0278723b9629eb7c12532119e2d
group___f_u_n_c___f_l_o_w#ga1a86c76dcf8fec6e97ead6cf8f2717ff
group___f_u_n_c___f_l_o_w#gaf23f6f87fe90619810470fad7d11f321

Magstripe and EMV Contact, on Contactless NFC

Requirement:

All three technologies shall be detected: Magstripe Card Swipe, Contact Chipcard Insertion, Contactless Card (or
Mobile Phone) Tap.

On Contactless interface several card types shall be handled: MiFare, Felica, EMV, and others.

Flow (see below diagram):

To start technology selection the application calls cts_StartSelection() with CTS_CHIP, CTS_MSR, and

tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15

CTS_CTLS.

Additionally CTS_NFC_ENABLE and options[12..15] (NFC technologies) have to be set.

TEC component will start a thread to poll for swipe, insert or tap.

Once a card (or mobile phone) is detected the application gets the result by means of cts_WaitSelection().

Parameter usedTechnology informs which technology is used:

CTS_MSR: A magnetic card was swiped.

Application has to read the magstripe data (with help of ADK-MSR Programmers Guide) and process
transaction.
CTS_CHIP: A contact chip card was inserted.

Chip may already be activated (depending on CTS_NO_POWERON).

Application has to execute the chip transaction by means of ADK-EMV Contact Programmers Guide.
CTS_CTLS + CTS_DATA_TLV: A contactless card or mobile phone was tapped.

Parameter dataBuffer contains NFC related data in TLV format, see TEC result data tags.

Application shall use ADK-NFC Programmers Guide to realize the desired functionality, e.g.:
Felica
Mifare
APDU exchange

Automatically perform an EMV Contacless transaction:

The application may set CTS_EMV_AFTER_NFC_ISO.

In that case it also needs to call EMV_CTLS_SetupTransaction() before cts_StartSelection().

ADK-TEC will perform an EMV contactless transaction if an ISO14443 card is tapped.

If another card is used the application will get the above mentioned NFC results.

group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#gaafe9099680a56edd52a1258a797efa07
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
./pg_msr_programmers_guide
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#ga1073825ee49c63471bef39392d6df7e6
./pg_emv_contact_users_guide
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
tec__common_8h#a56386219739d173835a83194608fedea
group___t_e_c___d_a_t_a___t_a_g_s
./pg_nfc_users_guide
group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#ga16d617787fe23f80aae81a4c3bc944bf
group___f_u_n_c___f_l_o_w#ga1a86c76dcf8fec6e97ead6cf8f2717ff
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7

Magstripe and EMV Contact, on Contactless EMV and VAS (Value Added Services,
Wallets)

Requirement:

All three technologies shall be detected: Magstripe Card Swipe, Contact Chipcard Insertion, Contactless Card (or
Mobile Phone) Tap.

On Contactless interface it's needed to handle Value Added Services (VAS) Wallets and EMV payments.

Flow (see below diagram):

Application has to prepare ADK-NFC by means of NFC_VAS_PreLoad() (see ADK-NFC Programmers Guide).

If the used VAS config includes "Pay" (= EMV) than EMV_CTLS_SetupTransaction() is needed.

To start technology selection the application calls cts_StartSelection() with CTS_CHIP, CTS_MSR, and
CTS_CTLS.

Additionally CTS_VAS_ENABLE has to be set.

TEC component will start a thread to poll for swipe, insert or tap.

Once a card (or mobile phone) is detected the application gets the result by means of cts_WaitSelection().

Parameter usedTechnology informs which technology is used:

CTS_MSR: A magnetic card was swiped.

Application has to read the magstripe data (with help of ADK-MSR Programmers Guide) and process
transaction.
CTS_CHIP: A contact chip card was inserted.

Chip may already be activated (depending on CTS_NO_POWERON).

Application has to execute the chip transaction by means of ADK-EMV Contact Programmers Guide.
CTS_CTLS + CTS_DATA_TLV: A contactless card or mobile phone was tapped.

Parameter dataBuffer contains VAS related data in TLV format, see TEC result data tags.

If result data contains CTS_DATA_TAG_EMV_RESULT the TEC processed a complete EMV
transaction.

Application has to use ADK-EMV to collect the results.

Afterwards it can process the VAS data as needed.

sdi__nfc_8h#a071c33860fb2cf846a1466edf5bedfb7
./pg_nfc_users_guide
group___f_u_n_c___f_l_o_w#ga1a86c76dcf8fec6e97ead6cf8f2717ff
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#ga4678a7752f0337b236971dcd370edf93
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
./pg_msr_programmers_guide
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#ga1073825ee49c63471bef39392d6df7e6
./pg_emv_contact_users_guide
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
tec__common_8h#a56386219739d173835a83194608fedea
group___t_e_c___d_a_t_a___t_a_g_s
group___t_e_c___d_a_t_a___t_a_g_s#ga6de766623c7d58220a766c7bb6722c6f

Getting Started

The following two examples show how to use technology selection (ADK-TEC):

Sample1: Application using ADK-TEC without callback

#include "tec/tec.h"#include "msr/msr.h"#include "EMV_CT_Interface.h"
#include "EMV_CTLS_Interface.h".... a) MSR, CT, CTLS EMV only
// initialize:EMV_CT_InitFramework(...);EMV_CTLS_InitFramework(...);// setup transactionEMV_CTLS_SetupTransaction(...);// start technology selection without callback:if (cts_StartSelection(CTS_CHIP|CTS_CTLS|CTS_MSR, 10, NULL, NULL, NULL, 0) == CTS_OK) b) MSR, CT, CTLS EMV + WALLET (Remark: NFC ADK supports EITHER VAS processing OR PassTrough processing, mutual exclusive)unsigned char options[2] = {0};// initialize:EMV_CT_InitFramework(...);EMV_CTLS_InitFramework(...);NFC_Client_Init(...);NFC_Terminal_Config(...);NFC_VAS_UpdateConfig(...);cts_SetOptions(...); // to set VAS appID// setup transaction:EMV_CTLS_SetupTransaction(...);NFC_VAS_PreLoad(...);options[1] = CTS_VAS_ENABLE;// start technology selection without callback:if (cts_StartSelection(CTS_CHIP|CTS_CTLS|CTS_MSR, 10, NULL, NULL, options, 2) == CTS_OK) c) MSR, CT, CTLS EMV + NFC Pass Through (Remark: NFC ADK supports EITHER VAS processing OR PassTrough processing, mutual exclusive)unsigned char options[16] = {0};// initialize:EMV_CT_InitFramework(...);EMV_CTLS_InitFramework(...);NFC_Client_Init(...);// setup transaction:EMV_CTLS_SetupTransaction(...);options[1] = CTS_NFC_ENABLE;options[1] |= CTS_EMV_AFTER_NFC_ISO; // optionaloptions[15] = 0x0F; // select card types // start technology selection without callback:if (cts_StartSelection(CTS_CHIP|CTS_CTLS|CTS_MSR, 10, NULL, NULL, options, 16) == CTS_OK){ unsigned char technology; unsigned char tlv_response = false; unsigned char data[100]; unsigned short data_len = sizeof(data); int ret; // wait for result: while ((ret = cts_WaitSelection(&technology, data, data_len, 100)) == CTS_IN_PROGRESS) { // if abort request arrived (from GUI, ECR, ...) stop technology selection: if (aborted) cts_StopSelection(); } switch (ret) { case CTS_OK: // technology detected if(technology & CTS_DATA_TLV) { // clear TLV response flag technology &= ~CTS_DATA_TLV; tlv_response = true; } switch (technology) { case CTS_MSR: MSR_GetData(...); MSR_Deactivate(...); break; case CTS_CHIP: EMV_CT_ContinueOffline(...); EMV_CT_ContinueOnline(...); // wait for removal of chip card cts_WaitCardRemoval2(10); break; case CTS_CTLS: if (tlv_response) { // Evaluate the response tags for NFC Pass Through, NFC VAS processing, and EMV processing if configured in b) or c) above. } else { EMV_CTLS_ContinueOffline(...); EMV_CTLS_ContinueOnline(...); } break; } break; case CTS_TIMEOUT: // no technology detected break; case CTS_STOPPED: // technology selection aborted break; default: // error (see cts_WaitSelection() for details about all possible return values) break; }}else{ EMV_CTLS_Break();}....

Sample2: Application using ADK-TEC with callback

#include <pthread.h>#include "tec/tec.h"#include "msr/msr.h"#include
"EMV_CT_Interface.h"#include "EMV_CTLS_Interface.h"
....static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;static pthread_cond_t condition = PTHREAD_COND_INITIALIZER; static unsigned char technology;static unsigned char data[
100];static unsigned short data_len = sizeof(data);static int
 ret; static void tecselCallback(void *data){ pthread_mutex_lock(&mutex); ret = cts_WaitSelection(&technology, data, data_len,
0
) pthread_cond_signal(&condition); pthread_mutex_unlock(&mutex);} a) MSR, CT, CTLS EMV only
// initialize:EMV_CT_InitFramework(...);EMV_CTLS_InitFramework(...);// setup transactionEMV_CTLS_SetupTransaction(...);// start technology selection with callback:if (cts_StartSelection(CTS_CHIP|CTS_CTLS|CTS_MSR, 10, &tecselCallback, NULL, NULL, 0) == CTS_OK) b) MSR, CT, CTLS EMV + WALLET (Remark: NFC ADK supports EITHER VAS processing OR PassTrough processing, mutual exclusive)unsigned char options[2] = {0};// initialize:EMV_CT_InitFramework(...);EMV_CTLS_InitFramework(...);NFC_Client_Init(...);NFC_Terminal_Config(...);NFC_VAS_UpdateConfig(...);cts_SetOptions(...); // to set VAS appID// setup transaction:EMV_CTLS_SetupTransaction(...);NFC_VAS_PreLoad(...);options[1] = CTS_VAS_ENABLE;// start technology selection with callback:if (cts_StartSelection(CTS_CHIP|CTS_CTLS|CTS_MSR, 10, &tecselCallback, NULL, options, 2) == CTS_OK) c) MSR, CT, CTLS EMV + NFC Pass Through (Remark: NFC ADK supports EITHER VAS processing OR PassTrough processing, mutual exclusive)unsigned char options[16] = {0};// initialize:EMV_CT_InitFramework(...);EMV_CTLS_InitFramework(...);NFC_Client_Init(...);// setup transaction:EMV_CTLS_SetupTransaction(...);options[1] = CTS_NFC_ENABLE;options[1] |= CTS_EMV_AFTER_NFC_ISO; // optionaloptions[15] = 0x0F; // select card types // start technology selection with callback:if (cts_StartSelection(CTS_CHIP|CTS_CTLS|CTS_MSR, 10, &tecselCallback, NULL, options, 16) == CTS_OK){ unsigned char tlv_response = false; pthread_mutex_lock(&mutex); // wait for callback: pthread_cond_wait(&condition, &mutex); pthread_mutex_unlock(&mutex); switch (ret) { case CTS_OK: // technology detected if(technology & CTS_DATA_TLV) { // clear TLV response flag technology &= ~CTS_DATA_TLV; tlv_response = true; } switch (technology) { case CTS_MSR: MSR_GetData(...); MSR_Deactivate(...); break; case CTS_CHIP: EMV_CT_ContinueOffline(...); EMV_CT_ContinueOnline(...); // wait for removal of chip card cts_WaitCardRemoval2(10); break; case CTS_CTLS: if (tlv_response) { // Evaluate the response tags for NFC Pass Through, NFC VAS processing, and EMV processing if configured in b) or c) above. } else { EMV_CTLS_ContinueOffline(...); EMV_CTLS_ContinueOnline(...); } break; } break; case CTS_TIMEOUT: // no technology detected break; case CTS_STOPPED: // technology selection aborted break; default: // error (see cts_WaitSelection() for details about all possible return values) break; }}else{ EMV_CTLS_Break();}....

Link your application with libtec.so and load the shared library libtec.so on your device. If you don't want to
periodically call cts_WaitSelection() you can supply a callback function to cts_StartSelection(). This callback
function is called exactly once after the technology selection has finished (due to detected technology, timeout,
or error). After this callback function has been called (or even withing the callback function) you can obtain the
result by cts_WaitSelection() setting its timeout to 0. A callback function is supported for card removal detection
as well (see cts_WaitCardRemoval()).

Programming

Programming and API Principles

The API consists of the following functions:

tec.h

cts_Version()

cts_SetTraceCallback()

cts_SetOptions()

cts_StartSelection()

cts_StopSelection()

cts_WaitSelection()

cts_RemoveTechnologies()

cts_AddTechnologies()

cts_WaitCardRemoval()

cts_WaitCardRemoval2()

ped_SetSendRcvCb()

ped_Pairing()

tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
tec_8h#a8db288b6803c1fba534d94a99f1b646b
tec_8h
tec__common_8h#a68272ed65703130d4858d9c28c21f9b9
tec__common_8h#a90770d44c55c14fa472396c74fec6052
tec_8h#aa237be1f0249503d0b959d3800f1ee34
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
tec_8h#acaf2d75d1b584ae97ff9ee4da47cee38
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
tec_8h#a8569782d27f43e5d88cef3575a5d12c6
tec_8h#aa60922ab5b40a033ac85a36e8022cafa
tec_8h#a8db288b6803c1fba534d94a99f1b646b
tec_8h#a92ab7780df1f8150c6d8a9b3ab3163bf
tec_2export_2tec_2ped_8h#aa093da583e918cfb6dd8e152c39af3bc
tec_2export_2tec_2ped_8h#a124ea72634b37bdf5d09ce5e0869ca55

ped_MovePin()

cts_SetNotificationCallback()

Some notes regarding the different technologies

In general only one of CTS_MSR, CTS_CHIP, CTS_CTLS is detected but in special cases (see Detecting MSR
and CTLS simultaneously and Special behavior on hybrid readers (UX30x)) two technologies can be detected at
once.

CTS_MSR: If you want to use the magnetic card reader, you do not need to call MSR_Activate() before
starting technology selection. ADK-TEC will do this for you. After technology selection finishes and the
detected technology is not CTS_MSR, MSR_Deactivate() is internally called as well. So you do not need
to do this either. Only if the detected technology is CTS_MSR, ADK-MSR is still activated to allow the
application to fetch the magnetic card data with MSR_GetData(). After this you shall call
MSR_Deactivate(). If using an UX device MSR_Deactivate() shall be called as well if technology
selection detects CTS_CHIP or returns CTS_NO_CHIP (see Special behavior on hybrid readers (UX30x)
).
CTS_CHIP: If you want to use the chip card reader, you should first call EMV_CT_InitFramework() to
enable the contact part of ADK-EMV. After technology selection detects a chip card the card is already
powered up (except if you set option CTS_NO_POWERON) and the application can call
EMV_CT_ContinueOffline().
CTS_CTLS: (EMV only, see below for NFC)

Card detection only (option CTS_PURE_CARD_DETECTION)

ADK-TEC activates the card by means of EMV_CTLS_SmartReset().

So calling application can continue to work with the card by EMV_CTLS_SmartISO().

And finally it shall call EMV_CTLS_SmartPowerOff() to switch off the RF field.

In case an EMV transaction is desired the EMV_CTLS_SmartPowerOff() has to be called.

And then EMV_CTLS_SetupTransaction() and EMV_CTLS_ContinueOffline().
EMV transaction

First call EMV_CTLS_InitFramework() and prior to each technology selection you have to call
EMV_CTLS_SetupTransaction().

ADK-TEC will internally call EMV_CTLS_ContinueOffline() to detect the card and perform the
transaction.

If a contactless card is detected, the application can call EMV_CTLS_ContinueOffline() again to
obtain the transaction results.

If no contactless card is detected, ADK-TEC internally calls EMV_CTLS_Break().

One additional remark regarding EMV_CTLS_SetupTransaction(): If ADK-TEC is used, you must
not set parameter ServerPollTimeout because in this case ADK-TEC takes care of polling.

tec_2export_2tec_2ped_8h#ab4792fd3cacefd42f8f7bf365e779484
tec_8h#ada083dc0f484d99ab24df79ed5f145c9
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
pg_tec_programmers_guide#subsubsec_tec_msr_after_ctls
pg_tec_programmers_guide#subsubsec_tec_msr_after_ctls
pg_tec_programmers_guide#subsubsec_tec_special_ux_handling
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
msr_8h#a1e92fd29720fecbf50da24a30c7b512f
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
msr_8h#aac28b2c3771f8221fc26a35f0fd6d0f8
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
msr_8h#ad00fdde838f486d43be689650ab58d43
msr_8h#aac28b2c3771f8221fc26a35f0fd6d0f8
msr_8h#aac28b2c3771f8221fc26a35f0fd6d0f8
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___r_e_t_u_r_n___c_o_d_e_s#ga058dc7a7d6d6562dac8171ca86f5b5c0
pg_tec_programmers_guide#subsubsec_tec_special_ux_handling
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#ga1073825ee49c63471bef39392d6df7e6
group___f_u_n_c___f_l_o_w#ga8be6df6babc587a19f63f284b2a6f006
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#gaeff0a0e1b335597ea1ec0781f15edb08
group___f_u_n_c___i_c_c#gae2c93f30f24ceb94c930a7cae2b36116
group___f_u_n_c___i_c_c#gafbcdb0278723b9629eb7c12532119e2d
group___f_u_n_c___i_c_c#gadd0716253a50b2791ac4e2a1627d1e8d
group___f_u_n_c___i_c_c#gadd0716253a50b2791ac4e2a1627d1e8d
group___f_u_n_c___f_l_o_w#ga1a86c76dcf8fec6e97ead6cf8f2717ff
group___f_u_n_c___f_l_o_w#gaf23f6f87fe90619810470fad7d11f321
group___f_u_n_c___f_l_o_w#ga1a86c76dcf8fec6e97ead6cf8f2717ff
group___f_u_n_c___f_l_o_w#gaf23f6f87fe90619810470fad7d11f321
group___f_u_n_c___f_l_o_w#gaf23f6f87fe90619810470fad7d11f321
group___f_u_n_c___f_l_o_w#ga2b4820be53959b56fb7f672bd54f4e63
group___f_u_n_c___f_l_o_w#ga1a86c76dcf8fec6e97ead6cf8f2717ff

Processing NFC with ADK-TEC

This is the general routine used in ADK-TEC for detecting and processing CTLS cards (pseudocode), it should
help you to understand how ADK-TEC behaves depending on the various CTLS options.

[0] if both CTS_NFC_ENABLE and CTS_VAS_ENABLE are set: exit end[1
] if CTS_NFC_ENABLE is set: call NFC_PT_Polling() if
 ISO A/B card found and CTS_EMV_AFTER_NFC_ISO is set: goto [3
] end exit end[2] if CTS_VAS_ENABLE is set: call
 NFC_VAS_Activate() if VAS_DO_PAY is returned: goto [3
] end exit end[3] if CTS_PURE_CARD_DETECTION is set
: call EMV_CTLS_SmartReset() else call
 EMV_CTLS_ContinueOffline() end

If it is possible that EMV_CTLS_ContinueOffline() is called by ADK-TEC, application has to call
EMV_CTLS_SetupTransaction() before starting technology selection. If ADK-TEC detects a card with
NFC_PT_Polling() and no subsequent EMV transaction is started, ADK-TEC keeps the RF field on to allow the
application to communicate with this card. In this case the application has to call NFC_PT_FieldOff() and
NFC_PT_Close() afterwards. Furthermore the first CTLS LED is left on by ADK-TEC in this case. The
application generally wants it to shine while communicating with the card or even wants to switch on further
LEDs. So as soon as the application has finished the transaction, it needs to switch off the LEDs or restart idle
blinking.

Detecting MSR and CTLS simultaneously

After CTS_CTLS has been detected technology selection can wait a certain amount of time for CTS_MSR
before returning the result to the application. If a magnetic card is swiped within this period of time technology
selection will return CTS_CTLS|CTS_MSR as technology. The timeout can be configured by the options
parameter of cts_StartSelection().

Special behavior on hybrid readers (UX30x)

Hybrid readers have a single slot for handling magstripe and contact chip.

ADK-TEC provides special functionality to help the application in making the decision which technology to
choose.

ADK-MSR Configuration

When using an UX30x device it is strongly recommended to activate the MSR UX enhancements (see ADK-
MSR Programmers Guide):

unsigned char options[] = { MSR_UX_ENHANCEMENTS };MSR_SetOptions(options, sizeof(options));

This has to be done only once, before the first call of cts_StartSelection(). These enhancements will prevent
MSR from reading the magnetic card on insertion.

If the MSR UX enhancements are not activated, the following remarks are valid as well. Additionally it is
possible that technology selection detects both CTS_MSR and CTS_CHIP in parallel.

group___f_u_n_c___f_l_o_w#gaf23f6f87fe90619810470fad7d11f321
group___f_u_n_c___f_l_o_w#ga1a86c76dcf8fec6e97ead6cf8f2717ff
sdi__nfc_8h#a309c7373d9b530f7c6027466d7e6f6f7
sdi__nfc_8h#ac02dad845a9116e51a68f4bfb394d93b
sdi__nfc_8h#ac9e3d1e964ffb8bb3923e989b968df0d
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
./pg_msr_programmers_guide
./pg_msr_programmers_guide
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662

Use Case: Technologies Contact Chip and Magstripe are supported

cts_StartSelection() is called with requesting technology CTS_CHIP (and CTS_MSR).

CTS_CTLS may or may not be activated.

Use Case: Technology Magstripe supported but Contact Chip NOT

cts_StartSelection() is called with requesting technology CTS_CHIP (and CTS_MSR).

CTS_CHIP is necessary to be able to detect the card insertion.

tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662

CTS_NO_POWERON shall be set to avoid activation of chip card.

CTS_CTLS may or may not be activated.

ADK-TEC legacy timeout handling

Above shown diagrams are recommended handling.

For downward compatibility the following functionality is still supported.

Let ADK-TEC wait for MSR data read on card removal

group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#ga1073825ee49c63471bef39392d6df7e6
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a

This scenario assumes that technologies CTS_CHIP and CTS_MSR are supported.

The application may set a timeout to cts_StartSelection() (options[8..9]).

Technology selection waits for this amount of time for MSR data from card removal.

This functionality is not possible when using CTS_NO_POWERON (so not for SDI and vos3)
If a chip card is inserted it goes the same way as usual:

cts_WaitSelection() returns CTS_OK and usedTechnology CTS_CHIP

The application shall use EMV_CT_StartTransaction() etc. to process an EMV contact transaction.
If a card without chip is inserted

ADK-TEC waits for the above mentioned timeout for card removal (and reading magstripe data)
If there is MSR data

cts_WaitSelection() returns CTS_OK and usedTechnology CTS_MSR

Application shall
call MSR_GetData() to obtain the MSR data
call MSR_Deactivate()

if not

cts_WaitSelection() returns CTS_NO_CHIP and usedTechnology 0.

In that case application
may

check if card is still inserted, if yes:
ask the cardholder to remove the card
wait for MSR data by polling MSR_DataAvailable()
call MSR_GetData() to obtain the MSR data

must (in any case)
call MSR_Deactivate()

Let ADK-TEC notify on card insertion

Detect card insertion, inform application about this event and wait for MSR data read on card removal.

cts_StartSelection() is called WITHOUT requesting technology CTS_CHIP

CTS_CTLS may or may not be activated.

Card insertion notification callback

cts_SetNotificationCallback() can be used to register the callback

group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
group___t_e_c___s_t_a_r_t___o_p_t_i_o_n_s#ga1073825ee49c63471bef39392d6df7e6
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
group___t_e_c___r_e_t_u_r_n___c_o_d_e_s#ga1952f713ce2bbfa1d8b54142ca52ecc4
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___f_u_n_c___f_l_o_w#gac13472c2a4aea6475fe7bb52627e97eb
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
group___t_e_c___r_e_t_u_r_n___c_o_d_e_s#ga1952f713ce2bbfa1d8b54142ca52ecc4
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
msr_8h#ad00fdde838f486d43be689650ab58d43
msr_8h#aac28b2c3771f8221fc26a35f0fd6d0f8
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
group___t_e_c___r_e_t_u_r_n___c_o_d_e_s#ga058dc7a7d6d6562dac8171ca86f5b5c0
msr_8h#a8096fa193f035eb4b80673260d720477
msr_8h#ad00fdde838f486d43be689650ab58d43
msr_8h#aac28b2c3771f8221fc26a35f0fd6d0f8
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gadbc63cc59da76fff7974cd5631f56662
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#ga56e64c2a97c61e8cb043de2852986a3a
tec_8h#ada083dc0f484d99ab24df79ed5f145c9

CTS_NOTIFICATION_CBK_TYPE_UX_CARD_INSERTED

That's invoked in case a card is inserted.

This functionality may be used to realize a cardholder display "please remove card".

It's only available in case one of the below mentioned timeouts is set.

Card Insertion Timeout

The application may set a timeout to cts_StartSelection() (options[8..9]).

After card insertion the ADK-TEC waits for this amount of time for MSR data (from card removal).
If there is MSR data

cts_WaitSelection() returns CTS_OK and usedTechnology CTS_MSR

Application shall
call MSR_GetData() to obtain the MSR data
call MSR_Deactivate()

if not

cts_WaitSelection() returns CTS_NO_CHIP and usedTechnology 0.

In that case application
may

check if card is still inserted, if yes:
ask the cardholder to remove the card
wait for MSR data by polling MSR_DataAvailable()
call MSR_GetData() to obtain the MSR data

must (in any case)
call MSR_Deactivate()

Card Removal Timeout

Avoid long delay after card removal in case used card does not have a magstripe.
By means of cts_SetOptions() the CTS_OPTION_TAG_UX_MSR_TIMEOUT can be set.
It's only effective in case the above mentioned timeout (cts_StartSelection() options[8..9]) is
deactivated.
Timeout is started after card removal.
If MSR data is read (before timeout expiry)

cts_WaitSelection() returns CTS_OK and usedTechnology CTS_MSR

Application shall
call MSR_GetData() to obtain the MSR data

group___t_e_c___n_o_t_i_f_i_c_a_t_i_o_n___c_b_k___t_y_p_e#ga131e9251b6b4f9c9c7a187c07f12820a
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
group___t_e_c___r_e_t_u_r_n___c_o_d_e_s#ga1952f713ce2bbfa1d8b54142ca52ecc4
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
msr_8h#ad00fdde838f486d43be689650ab58d43
msr_8h#aac28b2c3771f8221fc26a35f0fd6d0f8
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
group___t_e_c___r_e_t_u_r_n___c_o_d_e_s#ga058dc7a7d6d6562dac8171ca86f5b5c0
msr_8h#a8096fa193f035eb4b80673260d720477
msr_8h#ad00fdde838f486d43be689650ab58d43
msr_8h#aac28b2c3771f8221fc26a35f0fd6d0f8
tec_8h#aa237be1f0249503d0b959d3800f1ee34
group___t_e_c___o_p_t_i_o_n___t_a_g_s#gac87bf22ae5667cc2b22f86aad8218ce5
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
group___t_e_c___r_e_t_u_r_n___c_o_d_e_s#ga1952f713ce2bbfa1d8b54142ca52ecc4
group___t_e_c___t_e_c_h_n_o_l_o_g_i_e_s#gaece6355aecbe1744ed15e5b41e0e6c15
msr_8h#ad00fdde838f486d43be689650ab58d43

call MSR_Deactivate()
If not (timeout expiration)

cts_WaitSelection() returns CTS_UX_MSRDATA_NOT_AVAILABLE_TIMEOUT and
usedTechnology 0

In that case application
may

check if card is still inserted, if yes:
ask the cardholder to remove the card
wait for MSR data by polling MSR_DataAvailable()
call MSR_GetData() to obtain the MSR data

must (in any case)
call MSR_Deactivate()

System Setup and Requirements

Compiler and Linker Settings

include tec.h and link libtec.so

libtec defines it's dependencies to other libs in needed section (you can show that by "objdump -p libtec
| grep NEEDED")

Hardware

ADK-TEC is hardware platform agnostic and supports installation on V/OS and VOS2 terminals.

Software

ADK-TEC is designed to be platform agnostic and will be supported on V/OS and VOS2 terminal operating
systems.

Deliverables and Deployment

Packages delivered (x - version number digit):

Package name Description
tec-doc-x.x.x-xx.zip Documentation

tec-vos-dev-x.x.x-xx.zip VOS development package, to be installed in PC build environment

tec-vos2-dev-x.x.x-xx.zip VOS2 development package, to be installed in PC build environment

PP1000

Pairing and PIN transfer with PP1000

msr_8h#aac28b2c3771f8221fc26a35f0fd6d0f8
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
group___t_e_c___r_e_t_u_r_n___c_o_d_e_s#gadf0a2a2d0df56c222253a27bfeefdbb7
msr_8h#a8096fa193f035eb4b80673260d720477
msr_8h#ad00fdde838f486d43be689650ab58d43
msr_8h#aac28b2c3771f8221fc26a35f0fd6d0f8
tec_8h

ADK-TEC is capable of performing pairing a countertop device (CTP) with a PP1000 device and transferring
the PIN entered at the PP1000 into the vault of the countertop device. On the PP1000 you only need to install the
current AQUILA version, no ADK-TEC component is running on the PP1000. The application running on the
CTP needs to include the header file ped.h which is provided by ADK-TEC. Within this file the three functions
ped_SetSendRcvCb(), ped_Pairing(), and ped_MovePin() are declared. If you call one of these functions you
have to additionally install the library libPP1000.so on the CTP. This library is shipped together with ADK-TEC.
ped_Pairing() pairs the two devices. The actual pairing is only to be done once. However, if one of the devices is
paired with a third device in between, the devices must be repaired. ped_Pairing() first checks if the two devices
are successfully paired and performs the pairing only if this is necessary.

If the pairing is successful, a PIN can be transferred from PP1000 to CTP. The function ped_MovePin() does not
collect the PIN on the PP1000, so the PIN entry must be triggered by the application. It can directly send the
commands to the PP1000 or use the function pp1000_acceptPin() which is provided by libPP1000. After the PIN
has been entered, the PIN can be transferred into the vault of the CTP by calling ped_MovePin(). If this is
successfully done, the application can proceed as usual, e.g. call EMV_CT_Send_PIN_Offline() if this is an
offline PIN.

The communication between PP1000 and CTP has to be handled on application level. Both ADK-TEC and
PP1000 lib are platform independent and do not have communication built in. The application has to call either
ped_SetSendRcvCb() (provided by ADK-TEC) or pp1000_registerComs() (provided by PP1000 lib) to set
functions that send and receive data to/from the PP1000. So the application can freely decide which
communication method it wants to use, e.g. you may use ADK-COM or directly call OS functions.

Troubleshooting

Frequently Asked Questions

Q: cts_WaitSelection->timeout_msec: What is the purpose of this timeout if compare with cts_StartSelection-
>timeout_sec? Provide use cases.

A: cts_StartSelection->timeout_sec is the timeout for the whole technology selection process, e.g. 30 seconds
might be reasonable value. cts_WaitSelection->timeout_msec is the timeout for the cts_WaitSelection()
function. It blocks and returns only if the timeout expires (in this case CTS_IN_PROGRESS is returned) or a
result is available (something != CTS_IN_PROGRESS is returned). The timeout value to use here depends on
your application design. If you have set a callback function to cts_StartSelection(), this callback is invoked as
soon as a result is available. So you have to call cts_WaitSelection() exactly once after the callback is invoked,
set timeout=0 (waiting makes no sense because you know that a result is available) If you do not want to use
callback function you can call cts_WaitSelection() with different timeout values. If you have set timeout in
cts_StartSelection() to 30 seconds, the easiest thing to do is set cts_WaitSelection->timeout_msec to 35000 ms
(maybe even longer if you set options[8..9] because this may prolongate the technology selection). Then you
have to call cts_WaitSelection() only once, it blocks and returns as soon as a result is available. This works of
course only if cts_StartSelection->timeout_sec does not exceed ~60 seconds. If you set cts_WaitSelection-
>timeout_msec to smaller values you have to call the function in a loop until a result (something !=
CTS_IN_PROGRESS) is returned. This makes sense if you want to do other things in the same thread while
waiting for result of technology selection, e.g. you may want to call cts_StopSelection() if abort request arrived
from GUI or ECR. So in this case the timeout depends on the frequency with that you want to do the other
things, e.g. a timeout of 0 is possible but will lead to high system load wheras a timeout of 100ms seems
reasonable.

tec_2export_2tec_2ped_8h#aa093da583e918cfb6dd8e152c39af3bc
tec_2export_2tec_2ped_8h#a124ea72634b37bdf5d09ce5e0869ca55
tec_2export_2tec_2ped_8h#ab4792fd3cacefd42f8f7bf365e779484
tec_2export_2tec_2ped_8h#a124ea72634b37bdf5d09ce5e0869ca55
tec_2export_2tec_2ped_8h#a124ea72634b37bdf5d09ce5e0869ca55
tec_2export_2tec_2ped_8h#ab4792fd3cacefd42f8f7bf365e779484
tec_2export_2tec_2ped_8h#ab4792fd3cacefd42f8f7bf365e779484
group___f_u_n_c___f_l_o_w#ga895cb054c344d011e9e3c6acc4aadafe
tec_2export_2tec_2ped_8h#aa093da583e918cfb6dd8e152c39af3bc
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
tec_8h#aee5b104d8ad6e85feddb685379cdbf0c
tec_8h#acaf2d75d1b584ae97ff9ee4da47cee38

Q: Some time ago, upon reviewing our test logs, you pointed out that we should not call the API
MSR_Activate() if next we start the selection with the API cts_StartSelection() because the latter activates the
reader by itself. And what about the scenario when we want to establish the MSR callback and then use the
selection? Here, MSR_Activate() is the only way to establish such a callback. Is this a legal use case to use
simultaneously the MSR callback and the selection which, in turn, may have its own callback?

A: No, this is not a legal use case. You should not establish the MSR callback if you use technology selection.
This is confusing and not necessary anyway. If MSR data is available, technology selection will finish, so you
get the information from TEC, no need to set MSR callback. If you even call MSR_GetData() upon receiving
MSR callback, TEC would most likely not be able to detect that MSR data is available and continue waiting for
technology (TEC calls MSR_DataAvailable() and as soon as MSR_GetData() is called, the former will return 'no
data available'). So please do not do anything like this.

Logging

You have two options to enable logging, choose one of them (if you think this is helpful, you could actually use
both at once):

Register a trace callback function with cts_SetTraceCallback().
Use ADK-LOG: Configure logging channel "TEC" by means of log control panel.

Appendix

Appendix is empty.

msr_8h#a1e92fd29720fecbf50da24a30c7b512f
tec_8h#ac6699fe32fc23e90713eb617e9ff25e7
msr_8h#a1e92fd29720fecbf50da24a30c7b512f
msr_8h#ad00fdde838f486d43be689650ab58d43
msr_8h#a8096fa193f035eb4b80673260d720477
msr_8h#ad00fdde838f486d43be689650ab58d43
tec__common_8h#a90770d44c55c14fa472396c74fec6052

