
Packman Tool

Table of Contents

Packman tool
Introduction
Installation

Pre-requisites
Windows
Linux
Reference

Launch
Windows
Linux

Command line interface
Launch
Help
Windows force permissions (vos3 only)
build command

vos2
vos3

extract command
db_add command (vos3 only)
gen_diff command (vos3 only)
list command
gen_removal command (vos3 only)
merge command
sign command
validate command
cpapp_convert command (vos3 only)
gen_activation command (vos3 only)
upwd_build command (vos3 & vaos only)
uvrk_build command (vos3 only)
pre_signingportal command
post_signingportal command
zip_create command (vos3 only)
sponsor_change_create command (vos3 only)
sponsor_change_merge command (vos3 only)
zip_sign command (vos3 only)
zip_apply command (vos3 only)
stat command
ui command

Bundle filters (vos3 only)
User interface

Start
Add to catalog
Tree view
Content view
Search
Validation report
Bread crumbs

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

1

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

Create a project
Writable nodes
Select signer and signer users
Delete selected nodes
Undo / redo
Context menu
Edit text file
Adding files to archive
Change permissions
Exporting

Automatic fixes

This page contains information about the Packman tool usage and design.

Introduction
On V/OS and V/OS2 platforms, the packaging is using three levels of archives.

Dlfile
Bundle(s)

Package(s)

Please refer to Secure Installer for complete description of these archives.

The Packman tool is providing three facilities to manage the creation, modification and signing of archives:

1. Command line interface
2. UI interface
3. Python library with APIs

Installation

Pre-requisites

Packman tool has following pre-requisites:

Host OS: Windows or Linux.
HTML5 CSS3 Javascript browser (only if UI interface is used)

Windows

1. Install python 3.8+ for windows
choose 'Customize Installation'

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

2

https://verifone.cloudpg_vos_secins_guide#secins_page
https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

verify that install 'pip' is ticked

launch installation
2. Extract packman release file (.zip) to a directory of your choice

tools like 7-zip and the like can be used
'c:\tools\packman' is assumed in this documentation

3. Open a command line window 'cmd'
4. Change current directory to packman directory

cd c:\tools\packman

5. Install requirements

py -m pip install -e .

Linux

These steps may vary upon linux distributions. Ubuntu is assumed in the examples.

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

3

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

1. Install python 3.8+

sudo apt install python3

2. Install pip

sudo apt install python3-pip

3. Extract packman release file (tgz) to a directory of your choice
'~/tools/packman' is assumed in this documentation

tar xzvf packman_x.y.z.tgz

4. Change current directory to packman directory

cd ~/tools/packman

5. Install requirements

pip install -e .

Reference

Launch

Windows

1. Open a command line window 'cmd'

py packman.py

Linux

Open a terminal (ie Ctrl+Alt+T)

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

4

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

1. Launch

packman.py

Command line interface

Launch

All command line examples will use the same format:

packman.py <command> <options>

Please adapt to:

on Windows:

python packman.py <command> <options>

on Linux:

./packman.py <command> <options>

Help

General help:

packman.py -h

Example output:

usage: packman.py [-h] [--show_all] [--winforce_permissions]
{build,cpapp_convert,db_add,extract,gen_activation,gen_diff,gen_removal,list
,merge,post_signingportal,pre_signingportal,sign,sponsor_change_create,sponsor_change_merge,stat,ui,up_build,upw
d_build,uvrk_build,validate,zip_apply,zip_create,zip_sign} ... Packman v1.8.1 positional arguments:
{build,cpapp_convert,db_add,extract,gen_activation,gen_diff,gen_removal,list

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

5

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

,merge,post_signingportal,pre_signingportal,sign,sponsor_change_create,sponsor_change_merge,stat,ui,up_build,upw
d_build,uvrk_build,validate,zip_apply,zip_create,zip_sign} Detailed command usage: <command> -h optional
arguments: -h, --help show this help message and exit --show_all do not collapse issues --winforce_permissions
force usrX exec permissions on windows Examples: Build dlfile packman.py build -t vos2 -i input_dir -d
dl.file.tgz packman.py build -t vos3 -i input_dir -d dl.file.tar Convert CP application packman.py cpapp_convert
-t vos3 -s dev -z cpapp-123345678.zip -o dl.dlfile.tar packman.py cpapp_convert -t vos3 -s dev --cpapp_type
appdev -d dl.cpapp_prod.tar -o dl.cpapp_appdev.tar Add bundles to database packman.py db_add -t vos3 -d
dl.file.tar Extract dlfile packman.py extract -t vos2 -d dl.file.tgz -o ouputdir packman.py extract -t vos3 -d
dl.file.tar -o ouputdir Generate activation dlfile packman.py gen_activation -t vos3 -s dev -d dl.file.tar -o
dl.file_activate.tar Generate differential dlfile packman.py gen_diff -t vos3 --src dl.source.tar --dst
dl.destination.tar -o dl.differential.tar Generate removal dlfile packman.py gen_removal -t vos3 -s dev -d
dl.file.tar -o dl.file_remove.tar List content of 'dlfile.tgz packman.py list -t vos2 -d dlfile.tgz packman.py
list -t vos3 -d dl.file.tar Merge or filter dlfile packman.py merge -t vos2 -d dl.file1.tgz dl.file2.tgz -o
dl.file_merged.tgz packman.py merge -t vos3 -d dl.file1.tar dl.file2.tar -o dl.file_merged.tar Postprocess
dlfile after Signing Portal or Package Manager packman.py post_signingportal -t vos2 -d dlfile.tgz -o output.tgz
Preprocess dlfile for Signing Portal or Package Manager packman.py pre_signingportal -t vos2 -d dlfile.tgz -o
output.tgz Sign dlfile packman.py sign -t vos2 -s dev -d dl.file.tgz -o dl.file_signed.tgz packman.py sign -t
vos3 -s dev -d dl.file.tar -o dl.file_signed.tar Create a sponsor change into 'dl.dlfile.tar' packman.py
sponsor_change_create -t vos3 -s dev --current_sponsor 123456 --serial_numbers "123-456-789" -o dl.dlfile.tar
Merge two sponsor change dlfiles into 'dl.dlfile.tar' packman.py sponsor_change_merge -t vos3 -i
dl.signed_current.tar dl.signed_new.tar -o dl.dlfile.tar Output information on dlfile packman.py stat -t vos2 -d
dlfile.tgz packman.py stat -t vos3 -d dl.file.tar User interface packman.py ui Unified VRK packaging into '
file.uvrk.tar' packman.py uvrk_build -t vos3 -i payload_123-456-789.vrk2.json -o file.uvrk.tar Unified password
packaging packman.py upwd_build -t vos3 -s dev -e test -i password_changes.json -o file.upwd.tar packman.py
upwd_build -t vos3 -s dev -e encryption_cert.pem -i password_changes.json -o file.upwd.tar packman.py upwd_build
-t vaos -s dev -e encryption_cert.pem -i password_changes.json -o file.zip packman.py upwd_build -t vaos -s dev
-e encryption_cert.pem -i password_changes.json -o file.apk Unified VRK packaging into 'file.uvrk.tar'
packman.py uvrk_build -t vos3 -i payload_123-456-789.vrk2.json -o file.uvrk.tar Validate dlfile packman.py
validate -t vos2 -d dl.file.tgz packman.py validate -t vos3 -d dl.file.tar Apply zip file signed to directory
packman.py zip_apply -t vos3 -i directory -z files_signed.zip Create zip file to sign packman.py zip_create -t
vos3 -i directory -o files_to_sign.zip Sign content of zip packman.py zip_sign -t vos3 -s dev -c EMV -z
files.zip -o files_signed.zip

that options can be combined: '-r -d dlfile.tgz' is equivalent to '-rd dlfile.tgz'

Command help:

packman.py <command> -h

Example output:

packman.py list -h

usage: packman.py list [-h] [--report_type {security,dependency,content}] [-r] -t {vos1,vos2,vos3} (-d DLFILE |
-b BUNDLE | -p PACKAGE) list content of archive optional arguments: -h, --help show this help message and exit
--report_type {security,dependency,content} report type - vos1:{'content'} vos2:{'content'} vos3:{'security',

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

6

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

'dependency', 'content'} -r, --recurse act recursively -t {vos1,vos2,vos3}, --platform {vos1,vos2,vos3} target
platform -d DLFILE, --dlfile DLFILE dlfile path -b BUNDLE, --bundle BUNDLE bundle path -p PACKAGE, --package
PACKAGE package path

Here a summary of commands:

Command Description

build build archive from directories

cpapp_convert convert CP application

db_add add bundles to database

extract extract content of archive

gen_activation generate activation dlfile

gen_diff generate differential dlfile

gen_removal generate removal dlfile

keywrap wrap key into archive

list list content of archive

merge merge several archives into one

pre_signingportal modify dlfile for usage with signing portal

post_signingportal modify dlfile after signing portal usage

sign sign archive content

sponsor_change_create create a sponsor change

sponsor_change_merge merge two sponsor change

stat output information on archive

ui launch user interface

upwd_build build unified packaging password

uvrk_build build unified packaging vrk

validate retrieve validation report on archive

zip_create create zip file with files to sign in directory

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

7

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

zip_sign sign file within zip file

zip_apply add signatures in zip file back to directory

All operations require to provide the target platform (ie '-t vos2')

Windows force permissions (vos3 only)

In order to force executable permission bits when running packman on Windows, a special option flag '–winforce_permissions' can be used:

packman.py --winforce_permissions build -t vos3 -s dev -i input_dir -fd dlfile.tar

On Windows, this will build a dlfile archive named 'dlfile.tar' from the content of the directories 'input_dir' for the platform vos3 and if a user
package has an executable file, its permissions bits for execution will be set.

build command

The 'build' command creates archives (dlfile, bundle, package) from the contents of directories. Please refer to 'build' help for all options.

vos2

Example usage:

packman.py build -t vos2 -i input_dir input_dir2 -d dlfile.tgz

This will build a dlfile archive 'dlfile.tgz' from the content of the directories 'input_dir' and 'input_dir2' for the platform vos2. This input
directory should normally contain CONTROL directory, bundles, ...

The 'build' command can also act recursively to create archives from the content of a directory. The top directory provided contains bundle
directories which in turn contain package directories. Each directory must contain the appropriate CONTROL directory and files. The recursive
build will recursively package all of them to produce a dlfile. The recursive build is enabled using the option flag '-r'.

Example usage (recursive):

packman.py build -t vos2 -ri input_dir -d dlfile.tgz

This will build a dlfile archive named 'dlfile.tgz' from the content of the directory 'input_dir' recursively packaging dlfile/bundle/package
directories inside for the platform vos2.

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

8

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

vos3

Example usage:

packman.py build -t vos3 -i input_dir input_dir2 -d dlfile.tar

This will build a dlfile archive 'dlfile.tar' from the content of the directories 'input_dir' and 'input_dir2' for the platform vos3. Each input
directory should normally contain manifest and package directories coresponding to one bundle.

Here is an example of a bundle input directory structure:

The 'build' command can also act recursively to create archives from the content of a directory. The top directory provided contains bundle
directories which in turn contain package directories. Each directory must contain the appropriate manifest file and package directories (with
their content). The recursive build will recursively package all of them to produce a dlfile. The recursive build is enabled using the option flag
'-r'.

Example usage (recursive):

packman.py build -t vos3 -ri input_dir -d dlfile.tar

This will build a dlfile archive named 'dlfile.tar' from the content of the directory 'input_dir' recursively packaging dlfile/bundle directories
inside for the platform vos3.

extract command

The 'extract' command extracts recursively the content of archives (dlfile, bundle, package) to directories. The extracted content is layed out
such as a recursive build done on this output would recreate the original archive. Please refer to 'extract' help for all options.

Example usage:

packman.py extract -t vos2 -d dlfile.tgz -o dlfile_dir

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

9

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

This will extract a dlfile archive named 'dlfile.tgz' recursively to the directory 'dlfile_dir' for the platform vos2.

db_add command (vos3 only)

The 'db_add' command takes as input a dlfile and registers its content to a local database. This database is located at
<user_home>/.packman/db/ The content of the database can be used for generating differentials: see gen_diff command (vos3 only).

Before being registered, the dlfile is first validated.

Example usage:

packman.py db_add -t vos3 -d dlfile.tar

This will look register to database all bundles and upfiles in 'dlfile.tar'.

gen_diff command (vos3 only)

The 'gen_diff' command takes as input source and destination bundles and creates a differential dlfile. This command operates either by
providing a differential description file or by providing source ans destination dlfiles

When providing source and destination dlfiles, packman will add all bundles and upfiles of all dlfiles to the database (see db_add command
(vos3 only)) then create a differential description file containing the matching information and run the differential command with it.

Differential process overview:

In all steps, targeting of both source and destination are taken into account
For all upfiles, removal bundles and sponsor changes in destination: add to diff dlfile
In all other cases: perform entry by entry selection between "add", "copy" and "sbspatch" operations : add resulting differential
bundle to diff dlfile

Example usage (differential description file):

packman.py gen_diff -t vos3 --diff diff_file.json -o dl.diff.tar

This will look for the bundles listed in diff_file.json (source and destination), check that they are present in database and generate a
differential dlfile 'dl.diff.tar' for the platform vos3.

Example usage (source and destination dlfiles):

packman.py gen_diff -t vos3 --src dl.source.tar --dst dl.destination.tar -o dl.diff.tar

This will add to database all bundles and upfiles in 'dl.source.tar' and 'dl.destination.tar' and then generate a differential dlfile 'dl.diff.tar' for
the platform vos3.

Here is shown the structure of a differential description file:

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

10

https://verifone.cloudpackman_users_guide#packman_cli_gen_diff
https://verifone.cloudpackman_users_guide#packman_cli_db_add
https://verifone.cloudpackman_users_guide#packman_cli_db_add
https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

{ "source": { "bundles": [{ "digest": "36e7300a0559831ede5065d1dd10d6802e4ad884d7965d512eabcb6f562430de",
"name": "bundle_a", "version": "1.0.0" } ...] "upfiles": [{ "digest":
"6802e4ad884d7965d512eabcb6f562430de36e7300a0559831ede5065d1dd10d", "name": "mykeya.uvrk.tar" }, ...] },
"destination": { "bundles": [{ "digest": "4ad884d7965d512eabcb6f562430de36e7300a0559831ede5065d1dd10d6802e",
"name": "bundle_b", "version": "1.0.0" }, ...] "upfiles": [{ "digest":
"e36e7300a06802e4ad884d7965d512eabcb6f562430d559831ede5065d1dd10d", "name": "mykeyb.uvrk.tar" }, ...] }}

Note: the differential process on entries ('copy' and 'sbspatch' operations) are allowed on all destination package types (read-only or not) and
can refer any file of any source bundle/package as long as this source package is read-only.

This command allows to specify Bundle filters (vos3 only)

list command

The 'list' command lists content of archives (dlfile, bundle, package). Please refer to 'list' help for all options.

Example usage:

packman.py list -t vos2 -rd dlfile.tgz

This will list recursively (-r) the content of a dlfile archive (-d) named 'dlfile.tgz' for the platform vos2.

gen_removal command (vos3 only)

The 'gen_removal' takes as input a dlfile containing bundles and creates a dlfile containing the corresponding removal bundles. The type of
remove bundles can be chosen with '–remove_type' which takes one of the following values:

bundle_version (default): this creates remove bundles for the bundle and its version
bundle : this creates remove bundles for the bundle without version specified
user : this creates remove bundles for the user (removing all bundles for that user)

Please refer to 'gen_removal' help for all options.

Example usage:

packman.py gen_removal -t vos3 -s dev -d dl.file.tar -o dl.file_remove.tar

This will look for the bundles in dlfile named 'dlfile.tgz' and create in 'dl.file_remove.tar' removal bundles using the 'bundle_version' type for
the platform vos3.

This command allows to specify Bundle filters (vos3 only)

list command

The 'list' command lists content of archives (dlfile, bundle, package). Please refer to 'list' help for all options.

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

11

https://verifone.cloudpackman_users_guide#packman_bundle_filters
https://verifone.cloudpackman_users_guide#packman_bundle_filters
https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

Example usage:

packman.py list -t vos2 -rd dlfile.tgz

This will list recursively (-r) the content of a dlfile archive (-d) named 'dlfile.tgz' for the platform vos2.

Example:

> ./packman.py list -t vos2 -rd dl.normal.tgzDlfile dl.normal.tgz Bundle bdl_normal.tgz Dir CONTROL/ File
control File filelist Package pkg_normal.tgz Dir CONTROL/ File control File filelist File normal Signature
pkg_normal.tgz.p7s

Other types of reports are available by using the '–report_type' option with:

content (all platforms, default): lists content and entry types
security (vos3 only): list bundles, their signer, user membership and requested capabilities
dependency (vos3 only): list bundles, their hardware platform, targeting and dependencies
target (vos3 only): lists installed entries with location, type (Dir, File, Symlink), size, linkname, user, group, mode, capabilities, sha1
similarity (vos3 only) (experimental): lists equal or similar file contents

merge command

The 'merge' command allows to combine several archives of same type (dlfile, bundle, package, uvrk, upwd) to create a single archive of that
same type containing the merge of all contents. Merging archives with different types is not allowed except between dlfile and a unified
package (uvrk, upwd). Please refer to 'merge' help for all options.

Example usage:

packman.py merge -t vos2 -d dlfile1.tgz dlfile2.tgz -o dlfile.tgz

This will create a dlfile archive named 'dlfile.tgz' which contains all content of the 'dlfile1.tgz' and 'dlfile2.tgz' for the platform vos2.

packman.py merge -t vos3 -u mykey1.uvrk.tar mykey2.uvrk.tar -o mykeys.uvrk.tar

This will create a combined uvrk archive with both uvrk archive keys merged.

packman.py merge -t vos3 -d dlfile.tar -u mykeys.uvrk.tar mypasswords.upwd.tar -o dl.merged.tar

This will create a dlfile 'dl.merged.tar' that contains all bundles of 'dlfile.tar', 'mykeys.uvrk.tar' and 'mypasswords.upwd.tar'.

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

12

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

This command allows to specify Bundle filters (vos3 only)

sign command

The 'sign' command signs content of archives (dlfile, bundle, package). Please refer to 'sign' help for all options.

Example usage 1:

packman.py sign -t vos2 -s dev_usr -d dlfile.tgz -o dlfile_signed.tgz

This will list recursively sign the content of a dlfile archive (-d) named 'dlfile.tgz' for the platform vos2 and output result in 'dlfile_signed.tgz'.

Example usage 2:

packman.py sign -t vos2 -rs dev_usr -d dlfile.tgz -fo dlfile_signed.tgz

Same as above except that if a signature already exists, it will resign anyway (-r) and if output file already exists, it will force overwriting (-f).

validate command

The 'validate' command creates a validation report for the content of archives (dlfile, bundle, package). Please refer to 'validate' help for all
options.

Example usage:

packman.py validate -t vos2 -rd dlfile.tgz

This will recursively scan the archive and display packaging errors if found.

Example output:

> ./packman.py validate -t vos2 -rd test_resources/dl.pkg_notcompressed.tgzERROR (structure) -
bdl_pkg_notcompressed.tgz/pkg_pkg_notcompressed.tar : Package is not compressederrors:1 warnings:0

cpapp_convert command (vos3 only)

The 'cpapp_convert' command converts a CP application (Commerce Plaform) into an installable dlfile. The input can be a CP application zip
file or a dlfile. The type of dlfile output can be chosen using the '–cpapp_type' option: 'prod' for normal type, 'appdev' for development on
appdev devices. Please refer to 'cpapp_convert' help for all options.

Example usage:

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

13

https://verifone.cloudpackman_users_guide#packman_bundle_filters
https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

packman.py cpapp_convert -t vos3 -s dev -z mycpapp-887643134.zip -o dl.mycpapp-887643134.tar

This will extract the CP application zip named 'mycpapp-887643134.zip', generate a CP application dlfile and sign it for development for the
platform vos3.

packman.py cpapp_convert -t vos3 -s dev --cpapp_type appdev -z mycpapp-887643134.zip -o dl.mycpapp-
887643134_appdev.tar

This will extract the CP application zip named 'mycpapp-887643134.zip', generate a CP application dlfile for appdev device and sign it for
development for the platform vos3.

packman.py cpapp_convert -t vos3 -s dev --cpapp_type appdev -d dl.mycpapp-887643134.tar -o dl.mycpapp-
887643134_appdev.tar

This will convert the CP application dlfile named dl.mycpapp-887643134.tar to CP application dlfile for appdev device and sign it for
development for the platform vos3.

gen_activation command (vos3 only)

The 'gen_activation' command creates usr1 activation installable dlfile which activates features of the system. This can be used typically to
generate activation for Commerce Applications. Please refer to 'gen_activation' help for all options.

Example usage:

packman.py gen_activation -t vos3 -s dev -d dl.mycpapp-887643134.tar dl.mycpapp-887643134_activate.tar

This will extract the CP application bundle in dl.mycpapp-887643134.tar and generate a corresponding activation dlfile and sign it for
development for the platform vos3.

upwd_build command (vos3 & vaos only)

The 'upwd_build' command creates unified packaging for password changes. Please refer to 'upwd_build' help for all options.

Example usage (vos3):

packman.py upwd_build -t vos3 -e encryption_cert.pem -s dev -i password_change.json -o file.upwd.tar

This will create the file.upwd.tar package containing encrypted and signed password changes instructions. The '-e encryption_cert.pem'
indicates which encryption certificate (pem file) to use for encryption and the '-s dev' indicates signing with development key. For testing

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

14

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

purposes only, a generic 'test' encryption certificate is bundled with packman and can be specified with option '-e test' (to test both on prod
and dev devices). The password changes instructions are passed using the content of a JSON file named 'password_change.json' in this
example. The structure of this instruction file is:

password_changes (mandatory): array of objects
target (mandatory): array of strings containing target serial numbers expressions
name (mandatory): string containing name of the password
pass (mandatory): string containing value of the password. Valid passwords are 7 to 12 characters.
expired (optional, default to false): boolean indicating if password is expired
require_old (optional, default to false): boolean indicating if old password is needed to change password

For the target field, the serial number expression must be either:

a fully defined serial number for a single device: like "123-456-789" (1 serial number)
a globing serial number expression using one or more wildcard (*) like "12*-456-78*" (100 serial numbers)

Here is an example of such file:

{ "password_changes": [{ "target": ["112-123-123"], "name": "SUPERVISOR", "pass": "1234567" }, { "target": [
"112-123-123"], "name": "LEVEL1", "pass": "1234567" }, { "target": ["112-123-555","112-123-44*"], "name":
"LEVEL1", "pass": "00123471321", "expired": true, "require_old": true }]}

In such unified packaging, the naming of content and output archive is important and packman will fail on wrong namings.

Note that 'merge' and 'validate' accept these type of unified packages for processing using the '-u' option.

Special case of vaos

Example usage (vaos):

packman.py upwd_build -t vaos -e encryption_cert.pem -s dev -i password_change.json -o file.zip

In order to be comply with vaos package signing, the upwd archive mentioned above will be automatically wrapped into a zip archive. The
output archive file can be named with:

'.zip' extension: can be directly installed on device
'.apk' extension: can be used to sign online. Once signed, resulting file can be renamed with '.zip' extension for installation. If dev
signature is requested (-s dev) this output file will be development signed using 'apksigner' tool. This 'apksigner' tool needs to be
installed separately and PATH environment variable set for packman to invoke it. It is available in the Android SDK but can also be
installed separately using the Android "Build tools" (choose OS flavor). Some linux distributions allow direct package installation (ie
ubuntu: 'sudo apt install apksigner').

uvrk_build command (vos3 only)

The 'uvrk_build' command creates unified packaging for vrk payloads. Please refer to 'uvrk_build' help for all options.

Example usage:

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

15

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

packman.py uvrk_build -t vos3 -i payload_123-456-789.vrk2.json -o file.uvrk.tar

This will create the file.uvrk.tar package containing the payload passed as parameter. In such unified packaging, the naming of content and
output archive is important and packman will fail on wrong namings.

Note that 'merge' and 'validate' accept these type of unified packages for processing using the '-u' option.

pre_signingportal command

The 'pre_signingportal' command preprocesses a dlfile before usage in Signing Portal or Package Manager. This command and the associated
'post_signingportal' work as workarounds for those tools for vos2 platform. It performs the following operations:

1. remove blacklist directory in dlfile
2. applies all automatic fixes see Automatic fixes

To restore the optimizations, it is recommended to use 'post_signingportal' on resulting dlfile after Signing Portal and Package Manager
usage. Please refer to 'pre_signingportal' help for all options.

Example usage:

packman.py pre_signingportal -t vos2 -d dlfile.tgz -o output.tgz

This will preprocess the dlfile 'dlfile.tgz' and write preprocessed dlfile to 'ouput.tgz'.

post_signingportal command

The 'post_signingportal' command postprocesses a dlfile after usage in Signing Portal or Package Manager. This command and the associated
'pre_signingportal' work as workarounds for those tools for vos2 platform. It performs the following operations:

1. restore blacklist directory in dlfile Please refer to 'post_signingportal' help for all options.

Example usage:

packman.py post_signingportal -t vos2 -d dlfile.tgz -o output.tgz

This will postprocess the dlfile 'dlfile.tgz' and write postprocessed dlfile to 'ouput.tgz'.

zip_create command (vos3 only)

The 'zip_create' command creates a zip file containing all files to be signed recursively in a directory. Please refer to 'zip_create' help for all
options.

Example usage:

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

16

https://verifone.cloudpackman_users_guide#packman_automatic_fixes
https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

packman.py zip_create -t vos3 -i directory -fo zip_to_sign.zip

This will recursively scan files and archive in directory and create zip file to be signed.

sponsor_change_create command (vos3 only)

The 'sponsor_change_create' command creates a sponsor change dlfile. Please refer to 'sponsor_change_create' help for all options.

Example usage (unlock):

packman.py sponsor_change_create -t vos3 -s dev --current_sponsor 123456 --serial_numbers "123-456-789" -o dl
.dlfile.tar

This will create dl.dlfile.tar that can be used to remove sponsor of device with serial number 123-456-789 and sponsor ID 123456. This dlfile
will need to be production signed with matching sponsor signer 123456 that can sign for usr1.

Example usage (change):

packman.py sponsor_change_create -t vos3 -s dev --current_sponsor 123456 --new_sponsor 456789 --serial_numbers
"123-456-789" -o dl.dlfile.tar

This will create dl.dlfile.tar that can be used to change sponsor of device with serial number 123-456-789 and sponsor ID 123456 to sponsor
456789. This dlfile will need to be production signed two times:

1. signed with matching sponsor signer 123456 that can sign for usr1.
2. signed with matching sponsor signer 456789 that can sign for usr1. Those two signed outputs need then to be merged back with the

merge command see sponsor_change_merge command (vos3 only)

sponsor_change_merge command (vos3 only)

The 'sponsor_change_merge' command merges two signed dlfiles to create a sponsor change dlfile. Please refer to 'sponsor_change_merge'
help for all options.

Example usage:

packman.py sponsor_change_merge -t vos3 -i dl.signed_current.tar dl.signed_new.tar -o dl.dlfile.tar

This will create dl.dlfile.tar that can be used to change the sponsor of a device. The two dlfiles provided need to be signed by the correct
signers for the current and new sponsors. see sponsor_change_create command (vos3 only)

zip_sign command (vos3 only)

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

17

https://verifone.cloudpackman_users_guide#packman_cli_sponsor_change_merge
https://verifone.cloudpackman_users_guide#packman_cli_sponsor_change_create
https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

The 'zip_sign' command signs the files contained in a zip file and create a signed zip file. Zip file used as input is typically the output of the
above "zip_create" command. Please refer to 'zip_sign' help for all options.

Example usage:

packman.py zip_sign -t vos3 -s dev -z zip_to_sign.zip -fo zip_zigned.zip

This will recursively scan files in zip_to_sign.zip and create zip_zigned.zip containing dev signatures.

zip_apply command (vos3 only)

The 'zip_apply' command will insert all signatures in zip file back to directories or archives. Zip file used as input is typically the output of the
above "zip_sign" command or from signing portal. Directory needs to be the exact same as when the "zip_create" command was used. Please
refer to 'zip_apply' help for all options.

Example usage:

packman.py zip_apply -t vos3 -i directory -z zip_zigned.zip

This will recursively scan files in directories and add signatures from zip_zigned.zip.

stat command

The 'stat' command outputs general information about an archive in a parsable form. Please refer to 'stat' help for all options.

Example usage:

packman.py stat -t vos3 -d dlfile.tar

This will output information like:

name = dlfile.tararchive_type = Dlfileplatform = vos3size = 10240hash_sha256 =
6b8018510c77b26fa80a651a86db4334d1dbe4f7dcefb843cab304a75644ee7ebundle_count = 1sponsor_id = 010245

ui command

The 'ui' command launches a local webserver and a browser client for user interface.

Example usage:

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

18

https://verifone.cloudclass_directory
https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

packman.py ui

Please refer to User interface for how to use user interface.

Bundle filters (vos3 only)
Where mentioned, commands like gen_removal command (vos3 only), merge command and list command allow to use bundle filters to
include or exclude some bundles from the processing. The following filter options are available:

–include_bundle_name: select which bundle names to be included (*)
–exclude_bundle_name: select which bundle names to be excluded (*)
–include_bundle_user: select which bundle users to be included (*)
–exclude_bundle_user: select which bundle users to be excluded (*)
–include_tgt_devices: select bundle matching target device models to be included
–include_tgt_dt_names: select bundle matching target device tree names to be included
–include_tgt_serial_numbers: select bundle matching serial numbers to be included
–include_arch_type: select type of archives to be included (one or more of 'bundle', 'upfile', 'upwd' and 'uvrk')
–exclude_arch_type: select type of archives to be excluded (one or more of 'bundle', 'upfile', 'upwd' and 'uvrk')

(*) accepts wilcard '*' to specify globing for the match.

All filters can be combined and each accept multiple values separated by spaces.

User interface

Start

When initially started, the browser window shows the following:

Add to catalog

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

19

https://verifone.cloudpackman_users_guide#packman_ui
https://verifone.cloudpackman_users_guide#packman_cli_gen_removal
https://verifone.cloudpackman_users_guide#packman_cli_merge
https://verifone.cloudpackman_users_guide#packman_cli_list
https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

To add an archive to the catalog, click on "Add", this will open this dialog:

Select the archive on your disk, select the type of archive and the platform, then confirm with "Add" button. The newly added archive will
appear in the list and can be removed using remove button "X". This operation can be performed several times and the current archive can
be selected in the dropdown list.

Tree view

The selected archive from the catalog is shown using a tree view which looks like a file explorer view, you can fold and open directories as
well as archives.

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

20

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

Content view

If the currently selected node in the tree has content that packman can display, the content of the file will be shown on the right side of the
window. Control files, signatures, images, html, xml, css, etc. can be viewed this way.

Search

The search entry area allows to look for nodes in the tree that contains the entered text. Note that clicking on the node path will bring you
directly to the selected node in the tree.

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

21

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

Validation report

The billboard icon right to the catalog list shows the current number of validation errors, clicking on it will bring up the validation report.

Bread crumbs

When selecting a node, the complete path of this node (separated by '/') is displayed. Each of these breadcrumbs are clickable to jump to
their location.

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

22

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

Create a project

In order to edit an archive, select it and click on the 'pen' icon. It will ask for a name for this project archive. This project file must have a
name that does not already exist in the catalog.

Writable nodes

Depending on the signer that is currently selected and the chosen signer users, the nodes of a project archive may be modifiable or not. This
is shown with lock icons.

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

23

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

Select signer and signer users

Choosing a signer is done using the signer dropbox.

When a signer has been selected, the icon next to it allows to select the signer users. The users shown are the ones supported by the current
signer. Thus for local signer, this is also depending on the currently inserted smartcard. Checking or unchecking users allows to limit the
allowed signed users.

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

24

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

Delete selected nodes

Nodes can be selected (checkbox) and removed using 'X' button

Undo / redo

Operations done to the project can be undone or redone using these buttons.

Context menu

A context menu is available on nodes for renaming, deleting, ...

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

25

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

Edit text file

In order to edit text files, select the file (file must be writable) and when content is displayed on the right pane, click on 'edit' button. This
allows to modify content and save modified content into selected file.

Adding files to archive

In order to add files to the current project, select the "Add from catalog" from the "Add" button. This will bring the catalog list into the right
part of the window for selection and will show treeview too. To add files to the current project, drag and drop the file into the project.

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

26

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

Another way to add a file is to choose "Add from disk". The will bring up a file chooser dialog box to insert it into the tree.

Change permissions

Selecting and right-click on node allows to choose "Permissions" that let you choose the permissions to set/unset.

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

27

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

Exporting

The exporting operation will use the current signer and create the resulting archive you edited. Some specific exports are also available which
correspond to command line operation. Please refer to Command line interface for more information on their usage.

Automatic fixes
When generating an archive, packman applies automatic fixes on contents that are writable. A content is considered writable when one of the
following applies:

content does not involve a signature nor signature of its parent
content involves a signature and selected signer is applicable
special operation where signing is postponed: ie pre_signingportal

Here is the list of automatic fixes:

fix depth-first ordering of archives
fix compression on archives
fix naming of extensions for archives, signature, certificate directory, remove '.' directories
fix filelist presence and content
fix blacklist presence and content
fix order of items in archives
fix permissions on windows
remove permissions on non-executable files
fix VHQ manifest presence and content
fix control file fields like ensuring 'Name' usage in bundle and 'Package' in packages

https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide
Updated: 17-Apr-2025

28

https://verifone.cloudpackman_users_guide#packman_cli
https://verifone.cloud/docs/application-development-kit-version-48/packman_users_guide

