*° verifone

https://verifone.cloud/docs/application-devel opment-kit-version-48/packman _users guide
Updated: 02-Oct-2025

Packman T ool

Table of Contents

Packman tool
Introduction
Installation

o Pre-requisites

o Windows

o Linux

o Reference
Launch

o Windows

o Linux
Command line interface
Launch
Help
Windows force permissions (vos3 only)
build command

= vos2

n vos3
extract command
db add command (vos3 only)
gen_diff command (vos3 only)
list command
gen removal command (vos3 only)
merge command
sign command
validate command
cpapp_convert command (vos3 only)
gen activation command (vos3 only)
upwd build command (vos3 & vaos only)
uvrk build command (vos3 only)
pre_signingportal command
post_signingportal command
zip create command (vos3 only)
sponsor_change create command (vos3 only)
o sponsor change merge command (vos3 only)

O O O O

¢}
o
¢}
¢}
e}
¢}
o
¢}
¢}
e}
¢}
o
¢}
¢}
e}
¢}

/docs/application-development-kit-version-48/packman_users_guide

zip_sign command (vos3 only)
zip apply command (vos3 only)
stat command
ui command
e Bundlefilters (vos3 only)
o User interface
Start
Add to catalog
Treeview
Content view
Search
Validation report
Bread crumbs
Create a project
Writable nodes
Select signer and signer users
Delete selected nodes
Undo / redo
Context menu
Edit text file
Adding filesto archive
Change permissions
o Exporting
e Automatic fixes
e Device mode validation (vos3 only)

O O O

(@]

O O 0O 0O 0O 0o O o 0O o0 o 0 o o o o

This page contains information about the Packman tool usage and design.

| ntroduction

On V/OS and V/OS2 platforms, the packaging is using three levels of archives.

¢ Difile
o Bundleg(s)
= Package(s)

Please refer to Secure Installer for complete description of these archives.

The Packman tool is providing three facilities to manage the creation, modification and signing of archives:

1. Command lineinterface
2. Ul interface
3. Python library with APIs

| nstallation

Pre-requisites

pg_vos_secins_guide#secins_page

Packman tool has following pre-requisites:

e Host OS: Windows or Linux.
e HTML5 CSS3 Javascript browser (only if Ul interface is used)

Windows

1. Install python 3.8+ for windows

o choose 'Customize Installation'
©» Python 3.8.10 (64-bit) Setup —

R
Install Python 3.8.10 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

—> Install Now
ChUsers\Armo_M1\AppData\Local\Programs\Python'\Python33

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—» Customize installation
Choose location and features

python

for Install launcher for all users (recommended)

W[ﬂdows [] Add Python 3.8 to PATH Cancel
o verify that install 'pip’ isticked

% Python 2.8.10 (B4-bit) Setup —

Optional Features

ﬂncumentatinné

Installs the Python documentation file,
b pip

Inztal% pip. which can download and install other Python packages.
tcl/tk and IDLE

Installs tkinter and the |DLE development environment.

Python test suite

Installs the standard library test suite.

py launcher for all users (requires elevation)

Use Programs and Features to remove the 'py' launcher,
python
for

Wlﬂd OWS Back Mext Cancel

o launch installation

2. Extract packman release file (.zip) to adirectory of your choice
o toolslike 7-zip and the like can be used
o 'c:\tools\packman' is assumed in this documentation

3. Open acommand line window ‘cmd'

4. Change current directory to packman directory

cd c:\tool s\ packnan
5. Install requirements

py -mpip install -e .

Linux
These steps may vary upon linux distributions. Ubuntu is assumed in the examples.
1. Install python 3.8+
sudo apt install python3
2. Install pip
sudo apt install python3-pip

3. Extract packman release file (tgz) to adirectory of your choice
o '~/tools/packman’ is assumed in this documentation

tar xzvf packman_x.y.z.tgz
4. Change current directory to packman directory
cd ~/tool s/ packman
5. Install requirements

pip install -e .

Reference

L aunch

Windows

1. Open acommand line window ‘cmd'

py packman. py

Linux

e Open aterminal (ie Ctrl+Alt+T)
1. Launch

packman. py

Command lineinterface

Launch

All command line examples will use the same format:
packman. py <comrmand> <opti ons>
Please adapt to:
e on Windows:
pyt hon packman. py <conmand> <opti ons>
e on Linux:

. I packman. py <command> <opti ons>

Help

e Genera help:

packman. py -h

Example output:
usage: packman.py [-h] [--show all] [--w nforce_perm ssions] {b
list

, mer ge, post _si gni ngportal, pre_signi ngportal, sign, sponsor_change_cr eat e, sponsor _cl
.11.0

positional arguments: {build, cpapp_convert, db_add, extract, gen_activati on, gen_di
[st

, mer ge, post _si gni ngportal, pre_signi ngportal,sign, sponsor_change_creat e, sponsor _cl
and exit --show_ all do

not coll apse issues --w nforce_perm ssions force usrX e
-123345678.
zip -odl.dlfile.tar packman. py cpapp_convert -t vos3 -s dev --cpapp_type
Li st content of

"difile.tgz packman. py list -t vos2 -d difile.tgz packman. py |i st

dl.dlfile.tar
' packman. py sponsor_change create -t vos3 -s dev --current_sponsor 12345
dl.dlifile.tar
' packman. py sponsor_change nerge -t vos3 -i dl.signed current.tar dl.sigl
file.uvrk.tar
' packman. py uvrk build -t vos3 -i payload_123-456-789.vrk2.json -0 file.
file.uvrk.tar
' packman. py uvrk build -t vos3 -i payload_123-456-789.vrk2.json -0 file.

that options can be combined: '-r -d difile.tgz' is equivalent to '-rd dlfile.tgz'

e Command help:

packman. py <command> -h

Example output:
packman. py list -h
usage: packman.py |i st

[-h] [--report_type {security, dependency,content}] [-r] -t {vosl,vos2,vos3} (-d
[i st

content of archive optional argunents: -h, --help show this hel p ne
and exit

--report _type {security, dependency, content} report type
"content'} vos2:{'content'} vos3:{'security', 'dependency', 'content'’
} -r, --recurse act recursively -t {vosl,vos2,vos3}, --platform{vosl,

Here a summary of commands:

Command Description

build build archive from directories
cpapp_convert convert CP application

db_add add bundles to database

extract extract content of archive
gen_activation generate activation dlfile
gen_diff generate differential difile
gen_removal generate removal difile
keywrap wrap key into archive

list list content of archive

merge merge several archivesinto one

pre_signingportal modify difile for usage with signing portal
post_signingportal modify difile after signing portal usage
sign sign archive content

sponsor_change _create create a sponsor change
sponsor_change_merge merge two sponsor change

stat output information on archive

ui launch user interface

upwd_build build unified packaging password
uvrk_build build unified packaging vrk

validate retrieve validation report on archive
Zip_create create zip file with filesto sign in directory
Zip_sign sign filewithin zip file

zip_apply add signatures in zip file back to directory

All operations require to provide the target platform (ie -t vos2')

Windows for ce per missions (vos3 only)

In order to force executable permission bits when running packman on Windows, a special option flag
'—“winforce_permissions can be used:

packman. py --wi nforce_perm ssions build -t vos3 -s dev -i input_dir -fd
difile.tar

On Windows, thiswill build a difile archive named 'difile.tar' from the content of the directories 'input_dir' for
the platform vos3 and if a user package has an executablefile, its permissions bits for execution will be set.

build command

The 'build’ command creates archives (dIfile, bundle, package) from the contents of directories. Please refer to
'build' help for all options.

VOS2

Example usage:
packman. py build -t vos2 -i input_dir input _dir2 -d dlfile.tgz

Thiswill build adifile archive 'dIfile.tgz’ from the content of the directories 'input_dir' and ‘input_dir2' for the
platform vos2. Thisinput directory should normally contain CONTROL directory, bundles, ...

The 'build’ command can also act recursively to create archives from the content of a directory. The top directory
provided contains bundle directories which in turn contain package directories. Each directory must contain the
appropriate CONTROL directory and files. The recursive build will recursively package all of them to produce a
difile. The recursive build is enabled using the option flag *-r'.

Example usage (recursive):
packman. py build -t vos2 -ri input _dir -d difile.tgz

Thiswill build a difile archive named 'dIfile.tgz' from the content of the directory ‘input_dir' recursively
packaging dlIfile/bundle/package directories inside for the platform vos2.

vos3
Example usage:
packman. py build -t vos3 -i input _dir input _dir2 -d dlifile.tar

Thiswill build adifile archive 'dIfile.tar' from the content of the directories ‘input_dir' and ‘input_dir2' for the
platform vos3. Each input directory should normally contain manifest and package directories coresponding to
one bundle.

Hereis an example of a bundle input directory structure:

The 'build’ command can aso act recursively to create archives from the content of a directory. The top directory
provided contains bundle directories which in turn contain package directories. Each directory must contain the
appropriate manifest file and package directories (with their content). The recursive build will recursively
package all of them to produce a difile. The recursive build is enabled using the option flag '-r'.

Example usage (recursive):

packman. py build -t vos3 -ri input_dir -d difile.tar

Thiswill build a difile archive named 'dlfile.tar’ from the content of the directory ‘input_dir' recursively
packaging dIfile/bundle directoriesinside for the platform vos3.

This command allows to specify Device mode validation (vos3 only)

extract command

The 'extract’ command extracts recursively the content of archives (difile, bundle, package) to directories. The
extracted content is layed out such as a recursive build done on this output would recreate the original archive.
Please refer to 'extract’ help for all options.

Example usage:

packman. py extract -t vos2 -d dlifile.tgz -o dlifile_dir

Thiswill extract a difile archive named 'dIfile.tgz' recursively to the directory ‘difile_dir' for the platform vos2.
db_add command (vos3 only)

The'db_add' command takes as input a difile and registersits content to alocal database. This database is

located at <user_home>/.packman/db/ The content of the database can be used for generating differentials: see
gen diff command (vos3 only).

Before being registered, the difile isfirst validated.
Example usage:
packman. py db_add -t vos3 -d difile.tar

Thiswill look register to database all bundles and upfilesin 'difile.tar'.
gen_diff command (vos3 only)

The'gen_diff' command takes as input source and destination bundles and creates a differentia dlfile. This
command operates either by providing a differential description file or by providing source ans destination
difiles

When providing source and destination dlfiles, packman will add all bundles and upfiles of all difilesto the
database (see db_add command (vos3 only)) then create a differential description file containing the matching
information and run the differential command with it.

Differentia process overview:

e Inall steps, targeting of both source and destination are taken into account

e For all upfiles, removal bundles and sponsor changes in destination: add to diff difile

¢ Inall other cases. perform entry by entry selection between "add", "copy" and "sbspatch” operations : add
resulting differential bundle to diff difile

Example usage (differential description file):

packman_users_guide#packman_device_modes
packman_users_guide#packman_cli_gen_diff
packman_users_guide#packman_cli_db_add

packman. py gen_diff -t vos3 --diff diff _file.json -o dl.diff.tar

Thiswill look for the bundleslisted in diff_file.json (source and destination), check that they are present in
database and generate a differential dlfile 'dl.diff.tar' for the platform vosS3.

Example usage (source and destination difiles):

packman. py gen_diff -t vos3 --src dl.source.tar --dst dl.destination.tar -o
dl . diff.tar

Thiswill add to database all bundles and upfilesin 'dl.source.tar' and 'dl.destination.tar' and then generate a
differential dlfile 'dl.diff.tar' for the platform vos3.

Here is shown the structure of a differential description file:

{ "source": { "bundl es": [{ "di gest":
" 36e7300a0559831ede5065d1dd10d6802e4ad884d7965d512eabch6f 562430de”
, "name": "bundle_a", "version": "1.0.0"
"upfiles”
| { "di gest":
" 6802e4ad884d7965d512eabcb6f 562430de36e7300a0559831ede5065d1dd10d"
, "nane": "nykeya.uvrk.tar"
, C] }, "destination": {
"bundl es": [{ "di gest":
" 4ad884d7965d512eabch6f 562430de36e7300a0559831ede5065d1dd10d6802e"
, "nanme": "bundl e_b", "version": "1.0.0"
}, C] "upfiles”
| "di gest":
" e36e7300a06802e4ad884d7965d512eabcbh6f 562430d559831ede5065d1dd10d"
, "nanme": "nmykeyb.uvrk.tar"
b 3}

Note: the differential process on entries (‘copy' and 'sbspatch’ operations) are allowed on al destination package
types (read-only or not) and can refer any file of any source bundle/package as long as this source package is
read-only.

This command allows to specify Bundle filters (vos3 only)

list command

The'list' command lists content of archives (dIfile, bundle, package). Please refer to 'list’ help for all options.
Example usage:

packman. py list -t vos2 -rd dlfile.tgz

Thiswill list recursively (-r) the content of a difile archive (-d) named 'dlfile.tgz’' for the platform vos2.

gen_removal command (vos3 only)

The 'gen_removal' takes as input a dlfile containing bundles and creates a difile containing the corresponding
removal bundles. The type of remove bundles can be chosen with '—remove_type' which takes one of the
following values:

packman_users_guide#packman_bundle_filters

¢ bundle version (default): this creates remove bundles for the bundle and its version
¢ bundle: this creates remove bundles for the bundle without version specified
e user : thiscreates remove bundlesfor the user (removing all bundles for that user)

Please refer to 'gen_removal' help for all options.
Example usage:
packman. py gen_renoval -t vos3 -s dev -d dl.file.tar -o dl.file_renove.tar

Thiswill look for the bundles in difile named 'dlIfile.tgz' and create in 'dl.file_remove.tar' removal bundles using
the 'bundle_version' type for the platform vos3.

This command allows to specify Bundle filters (vos3 only)

list command

The'list' command lists content of archives (difile, bundle, package). Please refer to 'list' help for al options.
Example usage:

packman. py list -t vos2 -rd dlfile.tgz

Thiswill list recursively (-r) the content of a difile archive (-d) named 'dlfile.tgz’' for the platform vos2.
Example:

> ./ packman. py |i st
-t vos2 -rd dl.normal .tgzDifile dl.normal.tgz Bundl e bdl _normal .tgz

Other types of reports are available by using the '—report_type' option with:

content (all platforms, default): lists content and entry types

security (vos3 only): list bundles, their signer, user membership and requested capabilities
dependency (vos3 only): list bundles, their hardware platform, targeting and dependencies

target (vos3 only): listsinstalled entries with location, type (Dir, File, Symlink), size, linkname, user,
group, mode, capabilities, shal

similarity (vos3 only) (experimental): lists equal or similar file contents

mer ge command

The 'merge’ command allows to combine several archives of same type (dlfile, bundle, package, uvrk, upwd) to
create a single archive of that same type containing the merge of all contents. Merging archives with different
typesis not allowed except between difile and a unified package (uvrk, upwd). Please refer to ‘'merge’ help for all
options.

Example usage:

packman. py nerge -t vos2 -d dlifilel.tgz difile2.tgz -o dlifile.tgz

packman_users_guide#packman_bundle_filters

Thiswill create adifile archive named 'dIfile.tgz’ which contains all content of the 'difilel.tgz' and 'dlIfile2.tgz’
for the platform vos2.

packman. py nerge -t vos3 -u nykeyl.uvrk.tar nykey2.uvrk.tar -o nykeys.uvrk
.tar

Thiswill create a combined uvrk archive with both uvrk archive keys merged.

packman. py nerge -t vos3 -d dlfile.tar -u nykeys.uvrk.tar nmypasswords. upwd
.tar -o dl.nerged.tar

Thiswill create adifile 'dl.merged.tar' that contains all bundles of 'difile.tar', 'mykeys.uvrk.tar' and
'mypasswords.upwd.tar'.

This command allows to specify Bundle filters (vos3 only) and Device mode validation (vos3 only)

sign command

The 'sign’ command signs content of archives (difile, bundle, package). Please refer to 'sign’ help for all options.
Example usage 1.
packman. py sign -t vos2 -s dev_usr -d difile.tgz -o dlfile_signed.tgz

Thiswill list recursively sign the content of a difile archive (-d) named 'difile.tgz’ for the platform vos2 and
output result in ‘difile_signed.tgz'.

Example usage 2:
packman. py sign -t vos2 -rs dev_usr -d dlfile.tgz -fo dlfile_signed.tgz

Same as above except that if a signature already exists, it will resign anyway (-r) and if output file already exists,
it will force overwriting (-f).

validate command

The 'validate' command creates a validation report for the content of archives (dlIfile, bundle, package). Please
refer to 'validate' help for all options.

Example usage (vos2):

packman. py validate -t vos2 -rd dlifile.tgz

Thiswill recursively scan the archive and display packaging errorsif found.
Example usage (vos3):

packman. py validate -t vos3 -rd dlifile.tar

Thiswill recursively scan the archive and display packaging errorsif found.

Example output:

packman_users_guide#packman_bundle_filters
packman_users_guide#packman_device_modes

> ./ packman. py validate -t vos2 -rd

test _resources/dl. pkg_notconpressed.tgzERROR (structure) -

bdl _pkg not conpressed. t gz/ pkg_pkg_not conpressed.tar : Package is not
conpressederrors:1 warnings:0

This command allows to specify Device mode validation (vos3 only)

cpapp_convert command (vos3 only)

The 'cpapp_convert' command converts a CP application (Commerce Plaform) into an installable dlfile. The
input can be a CP application zip file or adifile. The type of difile output can be chosen using the '—cpapp_type'
option: ‘prod' for normal type, ‘appdev’ for development on appdev devices. Please refer to ‘cpapp_convert' help
for all options.

Example usage:

packman. py cpapp_convert -t vos3 -s dev -z nycpapp-887643134.zip -o dl
. mycpapp-887643134.tar

Thiswill extract the CP application zip named 'mycpapp-887643134.zip', generate a CP application difile and
sign it for development for the platform vos3.

packman. py cpapp_convert -t vos3 -s dev --cpapp_type appdev -z
nmycpapp- 887643134. zip -o dl . mycpapp-887643134_appdev.tar

Thiswill extract the CP application zip named 'mycpapp-887643134.zip', generate a CP application difile for
appdev device and sign it for development for the platform vos3.

packman. py cpapp_convert -t vos3 -s dev --cpapp_type appdev -d dl
. mycpapp- 887643134.tar -o dl.nycpapp-887643134_ appdev.tar

Thiswill convert the CP application difile named dl.mycpapp-887643134.tar to CP application difile for appdev
device and sign it for development for the platform vos3.

gen_activation command (vos3 only)

The'gen_activation' command creates usrl activation installable difile which activates features of the system.
This can be used typically to generate activation for Commerce Applications. Please refer to 'gen_activation'
help for al options.

Example usage:

packman. py gen_activation -t vos3 -s dev -d dl.nycpapp-887643134.tar dl
. mycpapp- 887643134 _activate.tar

Thiswill extract the CP application bundle in dl.mycpapp-887643134.tar and generate a corresponding
activation difile and sign it for development for the platform vos3.

upwd_build command (vos3 & vaos only)

packman_users_guide#packman_device_modes

The 'upwd_build' command creates unified packaging for password changes. Please refer to 'upwd_build' help
for all options.

Example usage (vos3):

packman. py upwd_build -t vos3 -e encryption_cert.pem-s dev -i
password_change.json -o file.upwd.tar

Thiswill create the file.upwd.tar package containing encrypted and signed password changes instructions. The '-
e encryption_cert.pem’ indicates which encryption certificate (pem file) to use for encryption and the '-s dev'
indicates signing with development key. For testing purposes only, a generic 'test' encryption certificate is
bundled with packman and can be specified with option '-e test' (to test both on prod and dev devices). The
password changes instructions are passed using the content of a JSON file named 'password_change.json' in this
example. The structure of thisinstruction fileis:

¢ password_changes (mandatory): array of objects

target (mandatory): array of strings containing target serial numbers expressions

name (mandatory): string containing name of the password

pass (mandatory): string containing value of the password. Valid passwords are 7 to 12 digits.
expired (optional, default to false): boolean indicating if password is expired

require_old (optional, default to false): boolean indicating if old password is needed to change
password

O O O O O

For the target field, the serial number expression must be either:
o afully defined serial number for asingle device: like "123-456-789" (1 serial number)
e aglobing serial number expression using one or more wildcard (*) like "12*-456-78*" (100 serial
numbers)

Hereis an example of such file:

{ "password_changes": | { “"target": ["112-123-123"],
"nanme": " SUPERVI SOR', "pass": "1234567" }, { "target"
» ["112-123-123"], "nanme": "LEVEL1", "pass": "1234567"

: "target": ["112-123-555","112-123-44*"], "nanme":
"LEVEL1", "pass”: "00123471321", "expired": true,
“require_old": true }o1}

In such unified packaging, the naming of content and output archive isimportant and packman will fail on
wrong namings.

Note that ‘'merge’ and 'validate' accept these type of unified packages for processing using the -u' option.
Special case of vaos
Example usage (vaos):

packman. py upwd_build -t vaos -e encryption_cert.pem-s dev -i
password_change.json -o file.zip

In order to be comply with vaos package signing, the upwd archive mentioned above will be automatically
wrapped into a zip archive. The output archive file can be named with:

e '.zip' extension: can be directly installed on device

¢ '.apk' extension: can be used to sign online. Once signed, resulting file can be renamed with '.zip' extension
for installation. If dev signature is requested (-s dev) this output file will be development signed using
‘apksigner’ tool. This "apksigner’ tool needsto be installed separately and PATH environment variable set
for packman to invokeit. It isavailable in the Android SDK but can also beinstalled separately using the
Android "Build tools" (choose OS flavor). Some linux distributions allow direct package installation (ie
ubuntu: 'sudo apt install apksigner’).

uvrk_build command (vos3 only)

The 'uvrk_build' command creates unified packaging for vrk payloads. Please refer to 'uvrk_build' help for all
options.

Example usage:

packman. py uvrk build -t vos3 -i payl oad _123-456-789.vrk2.json -o file.uvrk
.tar

Thiswill create the file.uvrk.tar package containing the payload passed as parameter. In such unified packaging,
the naming of content and output archive isimportant and packman will fail on wrong namings.

Note that ‘'merge’ and 'validate' accept these type of unified packages for processing using the '-u' option.
pre_signingportal command

The 'pre_signingportal' command preprocesses a dlfile before usage in Signing Portal or Package Manager. This
command and the associated 'post_signingportal’ work as workarounds for those tools for vos2 platform. It
performs the following operations:

1. remove blacklist directory in difile
2. appliesall automatic fixes see Automatic fixes

To restore the optimizations, it is recommended to use 'post_signingportal' on resulting difile after Signing Portal
and Package Manager usage. Please refer to 'pre_signingportal’ help for all options.

Example usage:
packman. py pre_signingportal -t vos2 -d dlifile.tgz -0 output.tgz

Thiswill preprocess the difile 'difile.tgz' and write preprocessed dlfile to ‘ouput.tgz'.
post_signingportal command

The 'post_signingportal’ command postprocesses a difile after usage in Signing Portal or Package Manager. This
command and the associated 'pre_signingportal’ work as workarounds for those tools for vos2 platform. It
performs the following operations:

1. restore blacklist directory in difile Please refer to ‘post_signingportal’ help for al options.

Example usage:

packman_users_guide#packman_automatic_fixes

packman. py post_signingportal -t vos2 -d dlfile.tgz -0 output.tgz

Thiswill postprocess the difile 'difile.tgz’ and write postprocessed difile to ‘ouput.tgz'.
zip_create command (vos3 only)

The 'zip_create' command creates a zip file containing all files to be signed recursively in adirectory. Please
refer to 'zip_create' help for al options.

Example usage:
packman. py zip _create -t vos3 -i directory -fo zip_to_sign.zip

Thiswill recursively scan files and archive in directory and create zip file to be signed.
sponsor _change create command (vos3 only)

The 'sponsor_change _create' command creates a sponsor change dlfile. Please refer to 'sponsor_change create
help for all options.

Example usage (unlock):

packman. py sponsor_change create -t vos3 -s dev --current_sponsor 123456
--serial _nunbers "123-456-789" -o dl.dlfile.tar

Thiswill create dl.dIfile.tar that can be used to remove sponsor of device with serial number 123-456-789 and
sponsor 1D 123456. This dIfile will need to be production signed with matching sponsor signer 123456 that can
sign for usrl.

Example usage (change):

packman. py sponsor_change create -t vos3 -s dev --current_sponsor 123456
--new_sponsor 456789 --serial_nunbers "123-456-789" -o dl.dlfile.tar

Thiswill create dl.dIfile.tar that can be used to change sponsor of device with serial number 123-456-789 and
sponsor 1D 123456 to sponsor 456789. This difile will need to be production signed two times:

1. signed with matching sponsor signer 123456 that can sign for usrl.
2. signed with matching sponsor signer 456789 that can sign for usrl. Those two signed outputs need then to
be merged back with the merge command see sponsor _change merge command (vos3 only)

gponsor _change_merge command (vos3 only)

The 'sponsor_change_merge' command merges two signed difiles to create a sponsor change difile. Please refer
to 'sponsor_change _merge' help for al options.

Example usage:

packman. py sponsor_change _nerge -t vos3 -i dl.signed _current.tar dl
.signed new. tar -o dl.dlfile.tar

packman_users_guide#packman_cli_sponsor_change_merge

Thiswill create dl.dIfile.tar that can be used to change the sponsor of a device. The two dlfiles provided need to
be signed by the correct signers for the current and new sponsors. see sponsor _change create command (vos3

only)

zip_sign command (vos3 only)

The'zip_sign' command signs the files contained in a zip file and create asigned zip file. Zip file used asinput is
typically the output of the above "zip_create" command. Please refer to 'zip_sign' help for al options.

Example usage:
packman. py zip_sign -t vos3 -s dev -z zip_to_sign.zip -fo zip_zigned.zip

Thiswill recursively scan filesin zip_to_sign.zip and create zip_zigned.zip containing dev signatures.
zip_apply command (vos3 only)

The'zip_apply' command will insert all signaturesin zip file back to directories or archives. Zip file used as
input is typically the output of the above "zip_sign" command or from signing portal. Directory needs to be the
exact same as when the "zip_create" command was used. Please refer to 'zip_apply' help for al options.

Example usage:
packman. py zip_apply -t vos3 -i directory -z zip_zigned.zip

Thiswill recursively scan filesin directories and add signatures from zip_zigned.zip.
stat command

The 'stat’ command outputs general information about an archive in a parsable form. Please refer to 'stat’ help for
all options.

Example usage:

packman. py stat -t vos3 -d dlfile.tar

Thiswill output information like:

nane = difile.tararchive type = Difileplatform = vos3size =
10240hash_sha256 =

6b8018510c77b26f a80a651a86db4334d1dbe4f 7dcef b843cab304a75644ee7ebundl e_count
= lsponsor_id = 010245

ui command

The 'ui' command launches alocal webserver and a browser client for user interface.
Example usage:

packman. py ui

packman_users_guide#packman_cli_sponsor_change_create
packman_users_guide#packman_cli_sponsor_change_create
class_directory

Please refer to User interface for how to use user interface.

Bundlefilters (vos3 only)

Where mentioned, commands like gen remova command (vos3 only), merge command and list command allow
to use bundle filters to include or exclude some bundles from the processing. The following filter options are
available:

e —include _bundle name: select which bundle names to be included (*)

—exclude_bundle_name: select which bundle names to be excluded (*)

—include_bundle_user: select which bundle usersto be included (*)

—exclude bundle_user: select which bundle usersto be excluded (*)

—include_tgt_devices: select bundle matching target device models to be included

—include_tgt_dt_names: select bundle matching target device tree names to be included

—include_tgt_serial_numbers: select bundle matching serial numbers to be included

—include_tgt_hardware platforms:. select bundle matching hardware platformsto be included

—include _arch_type: select type of archivesto beincluded (one or more of ‘bundl€, ‘upfil€e’, 'upwd' and

‘uvrk’)

e —exclude_arch_type: select type of archivesto be excluded (one or more of 'bundl€’, 'upfil€, 'upwd' and
‘uvrk’)

(*) accepts wilcard ™*" to specify globing for the match.

All filters can be combined and each accept multiple values separated by spaces.

User interface

Start

When initially started, the browser window shows the following:

Packman o

Add

Add to catalog

To add an archive to the catalog, click on "Add", thiswill open this dialog:

packman_users_guide#packman_ui
packman_users_guide#packman_cli_gen_removal
packman_users_guide#packman_cli_merge
packman_users_guide#packman_cli_list

Add to catalog

Select file, type and platform

Browse... MNo file selected.
Difile v
Vos2 W

Select the archive on your disk, select the type of archive and the platform, then confirm with "Add" button. The
newly added archive will appear in the list and can be removed using remove button "X". This operation can be
performed several times and the current archive can be selected in the dropdown list.

Treeview

The selected archive from the catalog is shown using atree view which looks like afile explorer view, you can
fold and open directories as well as archives.

Packman o

Add x pile @D dl.bdl_notcompressed.tgz ~ i - B8

7 U~
Name User Mode Size A-user A-group
4 Diffile dl.bdl_notcompressed.tgz
Bundle bdl_notcompressed.tar 6 usrl mw-rw-r— 10.0 KiE phedon phedon
Signature bdl_notcompressed.tarp7s mw-rw-r— 626.0 B phedon phedon
Content view

If the currently selected node in the tree has content that packman can display, the content of the file will be
shown on the right side of the window. Control files, signatures, images, html, xml, css, etc. can be viewed this

way.

Name User Mode Size A-user A-group
4 Difile di.bdl_notcompressed.igz
4 | Bundle bdl_notcompressed.tar o usrl rw-rw-r— 10.0 KiB phedon phedon
A CONTROL rwxrwxr-x OB phedon phedon
|| control rw-rw-r—- 4208 phedon phedon
|| filelist nw-rw-r— 75.0B phedon phedon
» { Package = pkg_normal.tgz usrl rw-rw-r- 263.0B phedon phedon
Signatre pkg_normal.tgz.p7s rw-rv-r- 626.0 B phedon phedon
Signatre bdl_notcompressed.tarpis rw-rw-r—- 626.0 B phedon phedon

Search

The search entry area alows to look for nodes in the tree that contains the entered text. Note that clicking on the

node path will bring you directly to the selected node in the tree.

Search result for 'normal’ in
'dl.bdl_notcompressed.tgz'

Node

bdl_notcompressed.tar/pkg_normal.tgz
bdl_notcompressed.tar/pkg_normal.tgz/CONTROL

bdl_notcompressed.tar/pkg_normal.tgz/CONTROL/control

1
2
3
4 bdl_notcompressed.tar/pkg_normal.tgz/CONTROL/filelist
5 bdl notcompressed.tar/pkg_normal.tgz/normal

6

bdl_notcompressed.tar/pkg_normal.tgz.p7s

Validation report

The billboard icon right to the catalog list shows the current number of validation errors, clicking on it will bring
up the validation report.

X

Validation of 'dl.bdl_notcompressed.tgz' for 'vos2'
Errors: §)

Warnings:

Severity Category Node Description

1 @D structure bdl_notcompressed.tar Bundle is not compressed

Bread crumbs

When selecting a node, the complete path of this node (separated by /) is displayed. Each of these breadcrumbs
are clickable to jJump to their location.

Packman o

Add x Difile @dl.bdl_notcnmpressed.tgz* 18 dl.bdl_notcompressed.tgz f bdl_notcompr

J -~
Name User Mode Size A-user A-group
4 Difile di.bdl_notcompressed.tgz
4 | Bundle bdl_notcompressed.tar o usrl rw-rw-r-- 10.0 KiB phedon phedon
CONMTROL rwxrwxr-x OB phedon phedon
4 | Package = pkg_normal.tgz usrl mw-rw-r-- 263.0B phedon phedon
& CONTROL rwxrwxr-x 0B phedon phedon
|| control rw-rw-r—- 42.08 phedon phedon
|| filelist rw-rw-r—- 48.0B phedon phedon

m-rw-r— 7.0B phedon phedon

Signature pkg_normal.tgz.p7s rw-rw-r— E626.0 B phedon phedon
Signature bdl_notcompressed.tar.p7s rw-rw-r— 626.0 B phedon phedon
Create a project

In order to edit an archive, select it and click on the 'pen’ icon. It will ask for a name for this project archive. This
project file must have a name that does not already exist in the catal og.

New project >

Name

dl.bdl notcompressed2.tgz

Source: dl.bdl notcompressed.tgz

Writable nodes

Depending on the signer that is currently selected and the chosen signer users, the nodes of a project archive may
be modifiable or not. Thisis shown with lock icons.

ackman o

Add piile @@ dl.bdl_notcompressed2.tgz // v I - BEGIRGIRGTRGINTEEEEL PR EA R

MName User Mode Size A-user A-group
A Difile di.bdl_notcompressed2.tgz

4 []¢ Bundie bdl_notcompressed.tar ﬂ usrl nw-rw-r-- 10.0 KiB phedon phedon

CONTROL 8 rwxrwxr-x 0B phedon phedon

4 Package épkg_nmma!.tgz ﬂ usrl nwv-nw-r-- 263.0B phedon phedon

; CONTROL ﬂ nvxnwxr-x OB phedon phedon

|| normal E nw-rw-1-- F.0B phedon phedon

Signatwre pkg_normal.tgz.p7s ﬂ rnw-rw-r-- 626.0 B phedon phedon

[signature bdl_notcompressed.tarp’fs ﬂ rw-rw-r-- 6260 B phedon phedon

Select signer and signer users

Choosing a signer is done using the signer dropbox.

Packman o

Add x ol @ dl.normal2.tgz S~ 8~
[O

Name No signer
4 Difite di.normalz.tgz

Dev signer

> [0 Bundle bdl normal.igz :
- 9 Local signer

When a signer has been selected, the icon next to it allows to select the signer users. The users shown are the
ones supported by the current signer. Thus for local signer, thisis also depending on the currently inserted
smartcard. Checking or unchecking users allows to limit the allowed signed users.

Users for Dev signer

All usr All sys All other
usrl sysl root
usr2 sys2

usr3 sys3
usrd sysd
usrb sys5
usré sysb
usr/ sys7/
usr8 sys8
usr9 sys9
usrlo sysl0
usrll sysll
usrl2 sysl2
usrl3 sysl3
usrld sysld
usrlb syslb
usrle syslb

Apply

Delete selected nodes

Nodes can be selected (checkbox) and removed using 'X' button

Packman o

‘ Dev signer~

Name User Mode Size A-user A-group

4 Diliite di.bdl_notcompressed?2.igz

4[]0 Bundie bdl_notcompressed.tar usrl mw-rw-r-- 10.0 KiB phedon phedon

s [] CONTROL raxnwxr-x OB phedon phedon

O L] control rw-rw-r-- 42.0B phedon phedon

L1] filelist rw-rw-r-- 75.0B phedon phedon

4[]/ Package pkg_normal.tgz usrl rw-rw-r-- 263.0B8 phedon phedon

S ol CONTROL rwxrwxr-x OB phedon phedon

,_,nr::hrma! rw-rw-r-- TF.0B phedon phedon

] signature pkg_normal.tgz.p7s nw-rw-r-- G626.0 B phedon phedon

] signanwe bdl_notcompressed.tar.p7s rw-rw-r-- 626.0 B phedon phedon
Undo/redo

Operations done to the project can be undone or redone using these buttons.

Context menu

A context menu is available on nodes for renaming, deleting, ...

Packman o

Add x Difile @dl.bdl_notcompressedz.tgz’ M B dl.bdl notcompressed2.tg

o - EEES

2]

Name User Mode Size A-user A-group

4 Ciiile di.bdl_notcompressed?2.tgz

- [Bundie t]dl_nut{:nmpresﬁed.taré usrl mw-rw-r-- 10.0 KiB phedon phedon
[Signatwe bdl_notcom Rename rw-rw-r-- 626.0 B phedon phedon
Delete
Edit text file

In order to edit text files, select the file (file must be writable) and when content is displayed on the right pane,

click on 'edit’ button. This allows to modify content and save modified content into selected file.

Modify Content of 'sys_syslog.conf X

| # Tamper Logs.
*.err;local0.none .ﬂ'mntfsygsdata.l'logs.ﬂ'tampeﬂ

#5YS Logs. This comment is sentinel N1. Please do not edit
this line.

*.info;local0.none /mnt/sysdata/logs/messages

USER Logs. This comment is sentinel N2. Please do not edit
this line.

localO.info /mnt/appdata/logs/messages

Adding filesto archive

In order to add filesto the current project, select the "Add from catalog” from the "Add" button. Thiswill bring
the catalog list into the right part of the window for selection and will show treeview too. To add filesto the
current project, drag and drop the file into the project.

@ vos2_load solutions_dl.adk-4.8.8-1268-vos2-engage-prod2.tgz # ~

Mame User Mode Size A-user

4 Difite vos2 load solutions_dl.adk-4.8.8-1268-vos2-engage-prod2.1gz

e O 0.optim nxrwxr-x 0B buildagent
- [0 Bindie 1.05.siupdate_1.0.0.tgz ﬂ root rw-rw-r-- 222 MiB - buildagent
[] Signatwe 1.0S.siupdate 1.0.0.tgz.p7s a nw-rw-r-- 586.0 B buildagent
[0 Bundie 2.05.removeall.tgz ﬂ root mw-rw-r-- 263.0B buildagent
[l signatwe 2.0S.re moveall.tgz.p7s a w-nw-r-- 581.0B buildagent
[] Manfest Engage.mit nw-nwv-r-- 611.46 KiB buildagent

Another way to add afileisto choose "Add from disk". The will bring up afile chooser dialog box to insert it
into the tree.

Add from disk

Select file to add

Browse... Mo file selected.

Change permissions

Selecting and right-click on node allows to choose "Permissions’ that let you choose the permissions to
set/unset.

Change permissions

User Group Others
r r r
W W wW

8 x 8 B x

Exporting

The exporting operation will use the current signer and create the resulting archive you edited. Some specific
exports are also available which correspond to command line operation. Please refer to Command line interface
for more information on their usage.

Export (Dev signer) User Mode

Export ADK License migration (Dev signer)

[usrl mw-nn-r--

Export Pre-Signing Portal

TW-TW-T--

Export Post-Signing Portal

Automatic fixes

When generating an archive, packman applies automatic fixes on contents that are writable. A content is
considered writable when one of the following applies:

e content does not involve a signature nor signature of its parent
e content involves a signature and selected signer is applicable

packman_users_guide#packman_cli

e gpecial operation where signing is postponed: ie pre_signingportal
Hereisthelist of automatic fixes:

o fix depth-first ordering of archives

¢ fix compression on archives

¢ fix naming of extensions for archives, signature, certificate directory, remove'.' directories
o fix filelist presence and content

o fix blacklist presence and content

o fix order of itemsin archives

o fix permissions on windows

e remove permissions on non-executable files

¢ fix VHQ manifest presence and content

o fix control file fields like ensuring 'Name' usage in bundle and 'Package’ in packages

Device mode validation (vos3 only)

When validating an archive, packman checks for signature coherency. User can specify four different behaviors
explained here:

¢ Specifying "--mode prod", both system and user bundles must be prod signed
e Specifying "--mode osdev", both system and user bundles must be osdev signed
e Specifying "--mode appdev", system bundles must be appdev signed and user bundles must be osdev
signed
e Without specifying the mode, one of the below must validate:
o one of the above modesis matching
o system bundles must be prod and user bundles may be osdev signed: this however triggers a
warning that user prod signing is needed

