
https://verifone.cloud/docs/sca-functional-specification/best_practices
Updated: 23-Sep-2025

Best Practices for Integration

Session and Port Management

Session Management

The POS should be doing Start Session session at beginning of POS transaction and a FINISH session at end of
the transaction. Best practice is to START a session, process however many tenders are needed in order to
satisfy the transaction amount, and then to FINISH the session.
A session must be open for all payment (FUNCTION_TYPE - PAYMENT) and line item (FUNCTION_TYPE -
LINE_ITEM) transactions. Point persists an open state between POS requests using this session. If a session is
not open, the device will return with “No session” in the RESPONSE_TEXT element.
The POS system can use a Finish Session command to emulate a POS close out/exit of the session as long as the
payment transaction is not ‘in-flight’ to the gateway or host. To cancel the session, the POS system should send
the Finish Session command.

Socket Management

Socket Creation and Tear Down should mirror the POS Start Session session and Finish Session session. Always
attempt to finish the session before closing the socket connection.
If you have consistent session independent commands that you can tie to a POS transaction, you should use your
discretion. It is safest to create and tear down on each of the independent commands if they are not piggy backed
to a start/finish session from a transactional flow perspective.
From a device perspective, there is no harm leaving the socket open even beyond session finish, ust be cautious
and ensure the POS knows to reconnect if for some reason the socket connection is unavailable. For instance, if
some network actor causes the socket to close (maybe due to TTL, inactivity, etc.) but the higher-level interface
(Java, C#, etc.) does not receive notification of this event, the POS may still “think” the socket is open.

Secondary Port

When a session is started, the primary port is restricted to transaction processing commands. Secondary port
commands may be used to check the status of the primary port, cancel the transaction currently in progress, or
reboot the device and resync its connection to the POS. Other uses are explained below.
SCA offers a secondary port on port 5016. The secondary port is used as a back channel to the device, as the
primary port (5015) may be in use due to its request/response synchronous nature. The secondary port is enabled

/docs/sca-functional-specification/best_practices
protocol_spec/administration/start_session#lbl-proto-spec-start-session-main
protocol_spec/administration/finish_session#lbl-proto-spec-finish-session-main
protocol_spec/administration/finish_session#lbl-proto-spec-finish-session-main
protocol_spec/administration/start_session#lbl-proto-spec-start-session-main
protocol_spec/administration/finish_session#lbl-proto-spec-finish-session-main

and identified using configuration parameters.
It should be noted that the secondary port will never contain transactional data or details and is not required to be
message authenticated (i.e., no MAC).

Uses for Secondary Port

Checking status to determine what point of the transaction or consumer interaction is occurring on the
primary port

Example: POS may have issued a capture command and not received a response in 20
seconds. The POS may want to periodically check the status to see if the consumer is
progressing through the payment process effectively.
It should be noted this does not mean that the POS should issue a command on the
primary port and immediately and repeatedly query for a status on the secondary port.
Human interactions with the SCA payment application do take some time to perform,
so interval polling or checking is appropriate based upon the type of request issued on
the primary port.

Obtaining data about the SCA application or terminal, such as device name or device serial number

Determining if the device is in session with another POS and for how long.
It may also be used to determine if the POS may have another session in progress itself that
was not finished or terminated properly. The secondary port may be used to determine the
status so that the connection can be cleaned up and/or re-established.

Rebooting the device if the POS has lost its connection with the primary port or believes that the device is
in a non-recoverable state.

Refer to Secondary Port Transactions section for more details on Secondary Port transaction.

Network Settings

If a network infrastructure component (e.g., switch, router, etc.) is breaking the packets on a signature block and
packet fragments arrive at the POS, consider increasing the network maximum transmission unit (MTU) size to
avoid packet splitting.

Pairing Best Practices

The POS is supposed to store credentials to send with the transactions. Re-pairing should not take place for each
transaction – that is cumbersome, and the COUNTER value would always be 1. On a Register response, here is
what is supposed to be done with the MAC_KEY:

Option 1 (faster):

Base64 decode the MAC_KEY

payment_func/secondary_port/secondary_port#lbl-paymt-func-sec-port-trans-main
protocol_spec/administration/register#lbl-proto-spec-register-main

Decrypt the decoded value using the private key
Store the decrypted value and use that value to create the HMAC of the COUNTER on subsequent
requests

Option 2 (more secure):

Base64 decode the MAC_KEY
Store the decoded value
Decrypt the decoded value using the private key before each request and use the decrypted value to create
the HMAC of the COUNTER

Register_Encryption is the best overall security option for pairing Multiple ways for the POS to determine the
IP.

On screen via Network Settings splash screen after reboot
Barcode the terminal and scan it into the POS at time of pairing
Search each IP on the subnet for the device name

Once Paired, the POS should maintain the IP, Serial Number, and MAC address of the device to which it is
paired. Each subsequent boot up the POS should query the ARP table for the MAC address of the IP to which it
believes it is paired. The POS will immediately know if the IP of the device changed (for DHCP).

Payment Transactions Best Practices

Capture (Sale)

1. Send Start Session Session command to start a new session. The command is mandatory to send before
starting a payment transaction. Request format and expected response are provided below.

Request

<TRANSACTION>
<FUNCTION_TYPE>SESSION</FUNCTION_TYPE>
<COMMAND>START</COMMAND>
<BUSINESSDATE>20210712</BUSINESSDATE>
<TRAINING_MODE>0</TRAINING_MODE>
<INVOICE>123456</INVOICE>
<NOTIFY_SCA_EVENTS>FALSE</NOTIFY_SCA_EVENTS>
</TRANSACTION>

Response

protocol_spec/administration/register_enc#lbl-proto-spec-registerenc-main
protocol_spec/administration/start_session#lbl-proto-spec-start-session-main

<RESPONSE>
<RESPONSE_TEXT>Session Started</RESPONSE_TEXT>
<RESULT>OK</RESULT>
<RESULT_CODE>-1</RESULT_CODE>
<TERMINATION_STATUS>SUCCESS</TERMINATION_STATUS>
<TRAINING_MODE>OFF</TRAINING_MODE>
<COUNTER>12</COUNTER>
</RESPONSE>

2. Send the below Capture request for the Sale transaction. Response format provided below. These steps
provided based on Contact and CTLS Sale transaction. For Manual transaction MANUAL_ENTRY field
should be set to TRUE (<MANUAL_ENTRY>FALSE</MANUAL_ENTRY>).

Request

<TRANSACTION>
<FUNCTION_TYPE>PAYMENT</FUNCTION_TYPE>
<COMMAND>CAPTURE</COMMAND>
<TRANS_AMOUNT>9.00</TRANS_AMOUNT>
<MANUAL_ENTRY>FALSE</MANUAL_ENTRY>
<FORCE_FLAG>FALSE</FORCE_FLAG>
<CARD_EXP_MONTH>10</CARD_EXP_MONTH>
<CARD_EXP_YEAR>22</CARD_EXP_YEAR>
<CARD_TOKEN>fRiDcosOVskwZ8xdARQn</CARD_TOKEN>
<PAYMENT_TYPE>CREDIT</PAYMENT_TYPE>
</TRANSACTION>

Response

<RESPONSE>
<APPROVED_AMOUNT>9.00</APPROVED_AMOUNT>
<AUTH_CODE>093079</AUTH_CODE>
<BANK_USERDATA>VISA</BANK_USERDATA>
<CARD_EXP_MONTH>10</CARD_EXP_MONTH>
<CARD_EXP_YEAR>22</CARD_EXP_YEAR>
<CARD_TOKEN>fRiDcosOVskwZ8xdARQn</CARD_TOKEN>
<CTROUTD>42308</CTROUTD>
<INVOICE>123456</INVOICE>
<INTRN_SEQ_NUM>4007842722</INTRN_SEQ_NUM>
<LPTOKEN>3278483765646148999</LPTOKEN>
<MERCHID>222220001008</MERCHID>
<PAYMENT_MEDIA>VISA</PAYMENT_MEDIA>
<PAYMENT_TYPE>CREDIT</PAYMENT_TYPE>
<RESPONSE_CODE>A</RESPONSE_CODE>
<RESPONSE_TEXT>CAPTURED</RESPONSE_TEXT>
<RESULT>CAPTURED</RESULT>
<RESULT_CODE>4</RESULT_CODE>
<TERMID>001</TERMID>
<TERMINATION_STATUS>SUCCESS</TERMINATION_STATUS>
<TKN_EXPDATE>07022021</TKN_EXPDATE>
<TKN_MATCHING>3278483765646148999</TKN_MATCHING>
<TKN_USED>1</TKN_USED>
<TOKEN_SOURCE>PWC</TOKEN_SOURCE>
<TRAINING_MODE>OFF</TRAINING_MODE>
<TRANS_AMOUNT>9.00</TRANS_AMOUNT>
<TRANS_DATE>2021.06.02</TRANS_DATE>
<TRANS_SEQ_NUM>62</TRANS_SEQ_NUM>
<TRANS_TIME>07:45:39</TRANS_TIME>
<TROUTD>4007842722</TROUTD>
<RECEIPT_DATA>

payment_func/retail_restaurant/capture#lbl-proto-spec-retail-capture-main

 <RECEIPT>
 <TEXTLINE> OT WE Retail </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE> 100 North Point St </TEXTLINE>
 <TEXTLINE> SAN FRANCISCO, CA 94133 </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> 06/02/21 07:45:39</TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> SALE </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE> Entry Method: MANUAL </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE>Appr Code: 093079 Batch: 53001</TEXTLINE>
 <TEXTLINE>Transaction ID: 42308 </TEXTLINE>
 <TEXTLINE>Invoice: 123456 </TEXTLINE>
 <TEXTLINE>Response: CAPTURED </TEXTLINE>
 <TEXTLINE>Approved: Online </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE> Total: USD $ 9.00</TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE>X_____________________________</TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> No Refunds </TEXTLINE>
 <TEXTLINE> Store Credit Only </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE> Merchant Copy </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 </RECEIPT>
 <RECEIPT>
 <TEXTLINE> OT WE Retail </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE> 100 North Point St </TEXTLINE>
 <TEXTLINE> SAN FRANCISCO, CA 94133 </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE>06/02/21 07:45:39 </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> SALE </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE> Entry Method: MANUAL </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE>Appr Code: 093079 Batch: 153001</TEXTLINE>
 <TEXTLINE> Transaction ID: 42308 </TEXTLINE>
 <TEXTLINE> Invoice: 123456 </TEXTLINE>
 <TEXTLINE> Response: CAPTURED </TEXTLINE>
 <TEXTLINE> Approved: Online </TEXTLINE>

 <TEXTLINE />
 <TEXTLINE>Total: USD $ 9.00</TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> No Refunds </TEXTLINE>
 <TEXTLINE> Store Credit Only </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> Customer Copy </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 </RECEIPT>
</RECEIPT_DATA>
<COUNTER>9</COUNTER>
</RESPONSE>

3. Once the transaction completed, send Finish Session command to finish the payment process (payment
and line item transactions) and closes the session. Request format and expected response are provided
below.

Request

<TRANSACTION>
<FUNCTION_TYPE>SESSION</FUNCTION_TYPE>
<COMMAND>FINISH</COMMAND>
<COUNTER>1</COUNTER>
<MAC> … </MAC>
<MAC_LABEL>REG2</MAC_LABEL>
</TRANSACTION>

Response

<RESPONSE>
<RESPONSE_TEXT>SESSION finished</RESPONSE_TEXT>
<RESULT>OK</RESULT>
<RESULT_CODE>-1</RESULT_CODE>
<TERMINATION_STATUS>SUCCESS</TERMINATION_STATUS>
<COUNTER>1</COUNTER>
</RESPONSE>

Partial Approval

1. Send Start Session Session command to start a new session.
2. Send the below command request to perform a Sale transaction for partial approval. Response format is

provided below.

Request

protocol_spec/administration/finish_session#lbl-proto-spec-finish-session-main
protocol_spec/administration/start_session#lbl-proto-spec-start-session-main

<TRANSACTION>
<FUNCTION_TYPE>PAYMENT</FUNCTION_TYPE>
<COMMAND>CAPTURE</COMMAND>
<COUNTER>1</COUNTER>
<MAC>………..</MAC>
<MAC_LABEL>REG_2</MAC_LABEL>
<TRANS_AMOUNT>4.00</TRANS_AMOUNT>
</TRANSACTION>

Response

<RESPONSE_TEXT>CAPTURED : 000 : AP</RESPONSE_TEXT>
<RESULT>CAPTURED</RESULT>
<RESULT_CODE>4</RESULT_CODE>
<TERMINATION_STATUS>SUCCESS</TERMINATION_STATUS>
<TRANS_SEQ_NUM>60</TRANS_SEQ_NUM>
<INTRN_SEQ_NUM>5726881</INTRN_SEQ_NUM>
<TROUTD>3839</TROUTD>
<CTROUTD>303</CTROUTD>
<PAYMENT_TYPE>CREDIT</PAYMENT_TYPE>
<PAYMENT_MEDIA>VISA</PAYMENT_MEDIA>
<ACCT_NUM>************8291</ACCT_NUM>
<AUTH_CODE>098822</AUTH_CODE>
<APPROVED_AMOUNT>2.00</APPROVED_AMOUNT>
<DIFF_AMOUNT_DUE>2.00</DIFF_AMOUNT_DUE>
<CARDHOLDER>VISA TEST</CARDHOLDER>
<VSP_CODE>100</VSP_CODE>
<VSP_RESULTDESC>Success</VSP_RESULTDESC>
<VSP_TRXID>635912345549651203</VSP_TRXID>
<ORIG_TRANS_AMOUNT>2.00</ORIG_TRANS_AMOUNT>
<RECEIPT_DATA>

3. Partial approval screen will be displayed on the terminal with the options Yes and No.
4. Once the transaction completed, send Finish Session command to finish the payment process/session.

protocol_spec/administration/finish_session#lbl-proto-spec-finish-session-main

Note

Orange boxes represent prompts/screens shown on the device and purple boxes represent work
being done by business logic of the application. This is an example for Retail.

Note

Refer to Capture command in Payment Transactions - Retail and Restaurant chapter for the description of
request and response fields.

Credit (Refunds)

CREDIT (Message Interface) transaction returns funds to a cardholder’s account. It is typically used after a
batch has been settled or closed. Send Start Session session command to start a session. The command is
mandatory to send before starting a payment transaction. Request format and expected response are provided
below.

Request

<TRANSACTION>
<FUNCTION_TYPE>SESSION</FUNCTION_TYPE>
<COMMAND>START</COMMAND>
<BUSINESSDATE>20210712</BUSINESSDATE>
<TRAINING_MODE>0</TRAINING_MODE>
<INVOICE>123456</INVOICE>
<NOTIFY_SCA_EVENTS>FALSE</NOTIFY_SCA_EVENTS>
</TRANSACTION>

Response

<RESPONSE>
<RESPONSE_TEXT>Session Started</RESPONSE_TEXT>
<RESULT>OK</RESULT>
<RESULT_CODE>-1</RESULT_CODE>
<TERMINATION_STATUS>SUCCESS</TERMINATION_STATUS>
<TRAINING_MODE>OFF</TRAINING_MODE>
<COUNTER>12</COUNTER>
</RESPONSE>

Refund Flow with Card Screen

1. Send the below CREDIT (Message Interface) request for the Refund transaction. Response format
provided below. These steps provided based on Contact and CTLS Refund transaction.

payment_func/retail_restaurant/capture#lbl-proto-spec-retail-capture-main
payment_func/retail_restaurant/credit#lbl-proto-spec-retail-credit-main
protocol_spec/administration/start_session#lbl-proto-spec-start-session-main
payment_func/retail_restaurant/credit#lbl-proto-spec-retail-credit-main

Request

<TRANSACTION>
<FUNCTION_TYPE>PAYMENT</FUNCTION_TYPE>
<COMMAND>CREDIT</COMMAND>
<CTROUTD> </CTROUTD>
<TRANS_AMOUNT>4.00</TRANS_AMOUNT>
<PAYMENT_TYPE>CREDIT</PAYMENT_TYPE>
<MANUAL_ENTRY>FALSE</MANUAL_ENTRY>
</TRANSACTION>

Response

<RESPONSE>
<ACCT_NUM>222360******0203</ACCT_NUM>
<APPROVED_AMOUNT>4.00</APPROVED_AMOUNT>
<BANK_USERDATA>MC</BANK_USERDATA>
<BATCH_TRACE_ID>b4524d4b-93cc-4b61-ae43-563dbc3d8362</BATCH_TRACE_ID>
<CARD_ABBRV>MC</CARD_ABBRV>
<CARD_ENTRY_MODE>Contactless</CARD_ENTRY_MODE>
<CARD_EXP_MONTH>12</CARD_EXP_MONTH>
<CARD_EXP_YEAR>25</CARD_EXP_YEAR>
<CARD_TOKEN>2223602299990203</CARD_TOKEN>
<CTROUTD>75865</CTROUTD>
<INVOICE>123456</INVOICE>
<EMV_CVM>NONE</EMV_CVM>
<EMV_MODE>ISSUER</EMV_MODE>
<EMV_TAG_4F>A0000000041010</EMV_TAG_4F>
<EMV_TAG_50>MASTERCARD</EMV_TAG_50>
<EMV_TAG_5F2A>0840</EMV_TAG_5F2A>
<EMV_TAG_5F34>01</EMV_TAG_5F34>
<EMV_TAG_82>1980</EMV_TAG_82>
<EMV_TAG_84>A0000000041010</EMV_TAG_84>
<EMV_TAG_8A>Z1</EMV_TAG_8A>
<EMV_TAG_95>8000008001</EMV_TAG_95>
<EMV_TAG_9A>220717</EMV_TAG_9A>
<EMV_TAG_9B>6800</EMV_TAG_9B>
<EMV_TAG_9C>20</EMV_TAG_9C>
<EMV_TAG_9F02>000000000400</EMV_TAG_9F02>
<EMV_TAG_9F03>000000000000</EMV_TAG_9F03>
<EMV_TAG_9F06>A0000000041010</EMV_TAG_9F06>
<EMV_TAG_9F07>FF00</EMV_TAG_9F07>
<EMV_TAG_9F08>0002</EMV_TAG_9F08>
<EMV_TAG_9F09>0002</EMV_TAG_9F09>
<EMV_TAG_9F0D>0000000000</EMV_TAG_9F0D>
<EMV_TAG_9F0E>0000000000</EMV_TAG_9F0E>
<EMV_TAG_9F0F>F470808000</EMV_TAG_9F0F>
<EMV_TAG_9F10>0110800009220000000000000000000000FF</EMV_TAG_9F10>
<EMV_TAG_9F12>Mastercard</EMV_TAG_9F12>
<EMV_TAG_9F1A>0840</EMV_TAG_9F1A>
<EMV_TAG_9F1E>47312282</EMV_TAG_9F1E>
<EMV_TAG_9F21>160836</EMV_TAG_9F21>
<EMV_TAG_9F26>216B224CA3AA1958</EMV_TAG_9F26>
<EMV_TAG_9F27>00</EMV_TAG_9F27>
<EMV_TAG_9F33>E00800</EMV_TAG_9F33>
<EMV_TAG_9F34>1F0302</EMV_TAG_9F34>
<EMV_TAG_9F35>22</EMV_TAG_9F35>
<EMV_TAG_9F36>002F</EMV_TAG_9F36>
<EMV_TAG_9F37>B7DD4240</EMV_TAG_9F37>
<EMV_TAG_9F39>07</EMV_TAG_9F39>
<EMV_TAG_9F40>F000F0A001</EMV_TAG_9F40>
<EMV_TAG_9F41>00000003</EMV_TAG_9F41>
<EMV_TAG_9F4E>VerifoneFD</EMV_TAG_9F4E>
<EMV_TAG_9F53>R</EMV_TAG_9F53>
<EMV_TAG_9F6E>

08400000303000</
EMV_TAG_9F6E>
<INTRN_SEQ_NUM>4016133621</INTRN_SEQ_NUM>
<MERCHID>005059233998</MERCHID>
<PAYMENT_MEDIA>MC</PAYMENT_MEDIA>
<PAYMENT_TYPE>CREDIT</PAYMENT_TYPE>
<REFERENCE>000000000004</REFERENCE>
<RESPONSE_TEXT>APPROVAL - 000 </RESPONSE_TEXT>
<RESULT>CAPTURED</RESULT>
<RESULT_CODE>4</RESULT_CODE>
<TERMID>1126076</TERMID>
<TERMINATION_STATUS>SUCCESS</TERMINATION_STATUS>
<TRACE_CODE>133621</TRACE_CODE>
<TRAINING_MODE>OFF</TRAINING_MODE>
<TRANS_AMOUNT>4.00</TRANS_AMOUNT>
<TRANS_SEQ_NUM>4</TRANS_SEQ_NUM>
<TRANS_DATE>2022.07.17</TRANS_DATE>
<TRANS_TIME>06:38:58</TRANS_TIME>
<TROUTD>4016133621</TROUTD>
<VSP_CODE>100</VSP_CODE>
<VSP_RESULTDESC>Success</VSP_RESULTDESC>
<VSP_TRXID>637936511372920945</VSP_TRXID>
<COUNTER>8</COUNTER>
<TRAN_LANG_CODE>en</TRAN_LANG_CODE>
<RECEIPT_DATA>
 <RECEIPT>
 <TEXTLINE> BED BATH BEYOND 1997 </TEXTLINE>
 <TEXTLINE> 1997 </TEXTLINE>
 <TEXTLINE> 650 Liberty Ave </TEXTLINE>
 <TEXTLINE> UNION, NJ 07083 </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE>07/17/22 16:09:00</TEXTLINE>
 <TEXTLINE />
 <TEXTLINE>Client ID: 17345800010001 </TEXTLINE>
 <TEXTLINE>Merchant ID: ********3998 </TEXTLINE>
 <TEXTLINE>Term ID: 1126076 </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> Refund </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE>************0203 MASTERCARD</TEXTLINE>
 <TEXTLINE>Entry Method: Chip Read Contactless </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE>Transaction ID: 75865 </TEXTLINE>
 <TEXTLINE>Payment Type: CREDIT </TEXTLINE>
 <TEXTLINE>Mode:Issuer </TEXTLINE>
 <TEXTLINE>Result:CAPTURED </TEXTLINE>
 <TEXTLINE>Approved Amount:USD $4.00 </TEXTLINE>
 <TEXTLINE>Application Pan:************0203 </TEXTLINE>
 <TEXTLINE>Invoice: 123456 </TEXTLINE>
 <TEXTLINE>Ref: 000000000004 </TEXTLINE>
 <TEXTLINE>Response: APPROVAL - 000 </TEXTLINE>
 <TEXTLINE>Approved: Online </TEXTLINE>
 <TEXTLINE>CID Code:0x00 (AAC) </TEXTLINE>
 <TEXTLINE />

 <TEXTLINE>Mastercard </TEXTLINE>
 <TEXTLINE>SEQUENCE: 00000003 </TEXTLINE>
 <TEXTLINE>AID: A0000000041010 </TEXTLINE>
 <TEXTLINE>TVR: 8000008001 </TEXTLINE>
 <TEXTLINE>TSI: 6800 </TEXTLINE>
 <TEXTLINE>IAD: 0110800009220000000000000000000000F</
TEXTLINE>
 <TEXTLINE>F </TEXTLINE>
 <TEXTLINE>ARC: Z1 </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE>Total: USD $ 4.00</TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> NO SIGNATURE REQUIRED </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> No Refunds </TEXTLINE>
 <TEXTLINE> Store Credit Only </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE> Merchant Copy </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 </RECEIPT>
 <RECEIPT>
 <TEXTLINE> BED BATH BEYOND 1997 </TEXTLINE>
 <TEXTLINE> 1997 </TEXTLINE>
 <TEXTLINE> 650 Liberty Ave </TEXTLINE>
 <TEXTLINE> UNION, NJ 07083 </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE>07/17/22 16:09:01</TEXTLINE>
 <TEXTLINE />
 <TEXTLINE>Client ID: 17345800010001 </TEXTLINE>
 <TEXTLINE>Merchant ID: ********3998 </TEXTLINE>
 <TEXTLINE>Term ID: 1126076 </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> Refund </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE>************0203 MASTERCARD</TEXTLINE>
 <TEXTLINE>Entry Method: Chip Read Contactless </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE>Transaction ID: 75865 </TEXTLINE>
 <TEXTLINE>Payment Type: CREDIT </TEXTLINE>
 <TEXTLINE>Mode:Issuer </TEXTLINE>
 <TEXTLINE>Result:CAPTURED </TEXTLINE>
 <TEXTLINE>Approved Amount:USD $4.00 </TEXTLINE>
 <TEXTLINE>Application Pan:************0203 </TEXTLINE>
 <TEXTLINE>Invoice: 123456 </TEXTLINE>
 <TEXTLINE>Ref: 000000000004 </TEXTLINE>
 <TEXTLINE>Approved: Online </TEXTLINE>

 <TEXTLINE>CID Code:0x00 (AAC) </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE>Mastercard </TEXTLINE>
 <TEXTLINE>SEQUENCE: 00000003 </TEXTLINE>
 <TEXTLINE>AID: A0000000041010 </TEXTLINE>
 <TEXTLINE>TVR: 8000008001 </TEXTLINE>
 <TEXTLINE>TSI: 6800 </TEXTLINE>
 <TEXTLINE>IAD: 0110800009220000000000000000000000F</
TEXTLINE>
 <TEXTLINE>F </TEXTLINE>
 <TEXTLINE>ARC: Z1 </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE>Total: USD $ 4.00</TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> No Refunds </TEXTLINE>
 <TEXTLINE> Store Credit Only </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> Customer Copy </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 </RECEIPT>
</RECEIPT_DATA>
</RESPONSE>

2. Once the transaction completed, send Finish Session command to finish the payment process (payment
and line item transactions) and closes the session. Request format and expected response are provided
below.

Request

<TRANSACTION>
<FUNCTION_TYPE>SESSION</FUNCTION_TYPE>
<COMMAND>FINISH</COMMAND>
<COUNTER>1</COUNTER>
<MAC> … </MAC>
<MAC_LABEL>REG2</MAC_LABEL>
</TRANSACTION>

Response

protocol_spec/administration/finish_session#lbl-proto-spec-finish-session-main

<RESPONSE>
<RESPONSE_TEXT>SESSION finished</RESPONSE_TEXT>
<RESULT>OK</RESULT>
<RESULT_CODE>-1</RESULT_CODE>
<TERMINATION_STATUS>SUCCESS</TERMINATION_STATUS>
<COUNTER>1</COUNTER>
</RESPONSE>

Note

Orange boxes represent prompts/screens shown on the device and purple boxes represent work
being done by business logic of the application. This is an example for Retail.

Refund Flow without Card Screen

Send the below CREDIT (Message Interface) request for the Refund transaction with CTROUTD field details.
Response format provided below.

Request

<TRANSACTION>
<FUNCTION_TYPE>PAYMENT</FUNCTION_TYPE>
<COMMAND>CREDIT</COMMAND>
<CTROUTD>75867</CTROUTD>
<TRANS_AMOUNT>3.00</TRANS_AMOUNT>
<PAYMENT_TYPE>CREDIT</PAYMENT_TYPE>
<MANUAL_ENTRY>FALSE</MANUAL_ENTRY>
</TRANSACTION>

Response

<RESPONSE>
<ACCT_NUM>222360******0203</ACCT_NUM>
<APPROVED_AMOUNT>3.00</APPROVED_AMOUNT>
<BANK_USERDATA>MC</BANK_USERDATA>
<BATCH_TRACE_ID>2238160f-35e0-4d25-a1e2-47133fc5cb15</BATCH_TRACE_ID>
<CTROUTD>75869</CTROUTD>
<INVOICE>123456</INVOICE>
<INTRN_SEQ_NUM>4016133662</INTRN_SEQ_NUM>
<MERCHID>005059233998</MERCHID>
<PAYMENT_MEDIA>MC</PAYMENT_MEDIA>
<PAYMENT_TYPE>CREDIT</PAYMENT_TYPE>
<REFERENCE>000000000005</REFERENCE>
<RESPONSE_TEXT>APPROVAL - 000 </RESPONSE_TEXT>
<RESULT>CAPTURED</RESULT>
<RESULT_CODE>4</RESULT_CODE>
<TERMID>1126076</TERMID>
<TERMINATION_STATUS>SUCCESS</TERMINATION_STATUS>
<TRACE_CODE>133662</TRACE_CODE>
<TRAINING_MODE>OFF</TRAINING_MODE>
<TRANS_AMOUNT>3.00</TRANS_AMOUNT>
<TRANS_SEQ_NUM>7</TRANS_SEQ_NUM>
<TRANS_DATE>2022.07.17</TRANS_DATE>
<TRANS_TIME>06:57:25</TRANS_TIME>
<TROUTD>4016133662</TROUTD>
<VSP_CODE>910</VSP_CODE>
<VSP_RESULTDESC>VSP NOT APPLICABLE</VSP_RESULTDESC>
<VSP_TRXID>0</VSP_TRXID>
<COUNTER>13</COUNTER>
<RECEIPT_DATA>

payment_func/retail_restaurant/credit#lbl-proto-spec-retail-credit-main

 <RECEIPT>
 <TEXTLINE> BED BATH BEYOND 1997 </
TEXTLINE>
 <TEXTLINE> 1997 </
TEXTLINE>
 <TEXTLINE> 650 Liberty Ave </
TEXTLINE>
 <TEXTLINE> UNION, NJ 07083 </
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE>07/17/22 16:27:29</
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE>Client ID: 17345800010001 </
TEXTLINE>
 <TEXTLINE>Merchant ID: ********3998 </
TEXTLINE>
 <TEXTLINE>Term ID: 1126076 </
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> Refund </
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE> MASTERCARD</
TEXTLINE>
 <TEXTLINE>Entry Method: Host Retrieval </
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE>Transaction ID: 75869 </
TEXTLINE>
 <TEXTLINE>Payment Type: CREDIT </
TEXTLINE>
 <TEXTLINE>Result:CAPTURED </
TEXTLINE>
 <TEXTLINE>Approved Amount:USD $3.00 </
TEXTLINE>
 <TEXTLINE>Invoice: 123456 </
TEXTLINE>
 <TEXTLINE>Ref: 000000000005 </
TEXTLINE>
 <TEXTLINE>Response: APPROVAL - 000 </
TEXTLINE>
 <TEXTLINE>Approved: Online </
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE>Total: USD $ 3.00</
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> NO SIGNATURE REQUIRED </
TEXTLINE>

 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> No Refunds </
TEXTLINE>
 <TEXTLINE> Store Credit Only </
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE> Merchant Copy </
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 </RECEIPT>
 <RECEIPT>
 <TEXTLINE> BED BATH BEYOND 1997 </
TEXTLINE>
 <TEXTLINE> 1997 </
TEXTLINE>
 <TEXTLINE> 650 Liberty Ave </
TEXTLINE>
 <TEXTLINE> UNION, NJ 07083 </
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE>07/17/22 16:27:30</
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE>Client ID: 17345800010001 </
TEXTLINE>
 <TEXTLINE>Merchant ID: ********3998 </
TEXTLINE>
 <TEXTLINE>Term ID: 1126076 </
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> Refund </
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE> MASTERCARD</
TEXTLINE>
 <TEXTLINE>Entry Method: Host Retrieval </
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE>Transaction ID: 75869 </
TEXTLINE>
 <TEXTLINE>Payment Type: CREDIT </
TEXTLINE>
 <TEXTLINE>Result:CAPTURED </
TEXTLINE>
 <TEXTLINE>Approved Amount:USD $3.00 </
TEXTLINE>
 <TEXTLINE>Invoice: 123456 </
TEXTLINE>
 <TEXTLINE>Ref: 000000000005 </
TEXTLINE>

 <TEXTLINE>Response: APPROVAL - 000 </
TEXTLINE>
 <TEXTLINE>Approved: Online </
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE>Total: USD $ 3.00</
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> No Refunds </
TEXTLINE>
 <TEXTLINE> Store Credit Only </
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> Customer Copy </
TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 </RECEIPT>
</RECEIPT_DATA>
</RESPONSE>

Note

Orange boxes represent prompts/screens shown on the device and purple boxes represent work
being done by business logic of the application. This is an example for Retail.

Note

Refer to CREDIT (Message Interface) command in Payment Transactions - Retail and Restaurant chapter for the
description of request and response fields.

Voids

A VOID (Message Interface) transaction removes a CAPTURE or CREDIT transaction from the open batch. A
void should be performed before the batch is settled or closed.

Note

When using First Data Rapid Connect processor, a Void cannot be issued 25 minutes after the original Sale
transaction. When that duration of time has transpired, you must process the transaction as a Credit (Return).
When using Vantiv processor in an SCA ‘direct to processor’ implementation, the CTROUTD is stored only for
the day - after that duration of time has transpired, you must process the transaction as a Credit (Return) with the
card token.

1. Send Start Session Session command to start a new session. The command is mandatory to send before
starting a payment transaction. Request format and expected response are provided below.

Request

<TRANSACTION>
<FUNCTION_TYPE>SESSION</FUNCTION_TYPE>
<COMMAND>START</COMMAND>
<BUSINESSDATE>20210712</BUSINESSDATE>
<TRAINING_MODE>0</TRAINING_MODE>
<INVOICE>123456</INVOICE>
<NOTIFY_SCA_EVENTS>FALSE</NOTIFY_SCA_EVENTS>
</TRANSACTION>

Response

payment_func/retail_restaurant/credit#lbl-proto-spec-retail-credit-main
payment_func/retail_restaurant/void#lbl-proto-spec-retail-void-main
protocol_spec/administration/start_session#lbl-proto-spec-start-session-main

<RESPONSE>
<RESPONSE_TEXT>Session Started</RESPONSE_TEXT>
<RESULT>OK</RESULT>
<RESULT_CODE>-1</RESULT_CODE>
<TERMINATION_STATUS>SUCCESS</TERMINATION_STATUS>
<TRAINING_MODE>OFF</TRAINING_MODE>
<COUNTER>12</COUNTER>
</RESPONSE>

2. Send the below VOID (Message Interface) request for the Void transaction. Response format provided
below.

Request

<TRANSACTION>
<FUNCTION_TYPE>PAYMENT</FUNCTION_TYPE>
<COMMAND>VOID</COMMAND>
<CTROUTD>75867</CTROUTD>
<PAYMENT_TYPE>CREDIT</PAYMENT_TYPE>
</TRANSACTION>

Response

<RESPONSE>
<ACCT_NUM>222360******0203</ACCT_NUM>
<APPROVED_AMOUNT>5.00</APPROVED_AMOUNT>
<AUTH_CODE>464145</AUTH_CODE>
<BANK_USERDATA>MC</BANK_USERDATA>
<BATCH_TRACE_ID>ad812dd5-9dd7-42a3-a339-8df675322864</BATCH_TRACE_ID>
<CTROUTD>75867</CTROUTD>
<INVOICE>123456</INVOICE>
<INTRN_SEQ_NUM>4016133673</INTRN_SEQ_NUM>
<MERCHID>005059233998</MERCHID>
<PAYMENT_MEDIA>MC</PAYMENT_MEDIA>
<PAYMENT_TYPE>CREDIT</PAYMENT_TYPE>
<REFERENCE>000000000005</REFERENCE>
<RESULT>VOIDED</RESULT>
<RESULT_CODE>7</RESULT_CODE>
<RESPONSE_TEXT>APPROVAL - 000 </RESPONSE_TEXT>
<TERMID>1126076</TERMID>
<TERMINATION_STATUS>SUCCESS</TERMINATION_STATUS>
<TRANS_AMOUNT>5.00</TRANS_AMOUNT>
<TRANS_SEQ_NUM>8</TRANS_SEQ_NUM>
<TRANS_DATE>2022.07.17</TRANS_DATE>
<TRANS_TIME>07:06:56</TRANS_TIME>
<TROUTD>4016133651</TROUTD>
<TRACE_CODE>133673</TRACE_CODE>
<VSP_CODE>910</VSP_CODE>
<VSP_RESULTDESC>VSP NOT APPLICABLE</VSP_RESULTDESC>
<VSP_TRXID>0</VSP_TRXID>
<COUNTER>15</COUNTER>
<RECEIPT_DATA>

payment_func/retail_restaurant/void#lbl-proto-spec-retail-void-main

 <RECEIPT>
 <TEXTLINE> BED BATH BEYOND 1997 </TEXTLINE>
 <TEXTLINE> 1997 </TEXTLINE>
 <TEXTLINE> 650 Liberty Ave </TEXTLINE>
 <TEXTLINE> UNION, NJ 07083 </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE>07/17/22 16:36:58</TEXTLINE>
 <TEXTLINE />
 <TEXTLINE>Client ID: 17345800010001 </TEXTLINE>
 <TEXTLINE>Merchant ID: ********3998 </TEXTLINE>
 <TEXTLINE>Term ID: 1126076 </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE>*****************VOID****************</TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE>Appr Code: 464145 </TEXTLINE>
 <TEXTLINE>Payment Type: CREDIT </TEXTLINE>
 <TEXTLINE>Result:VOIDED </TEXTLINE>
 <TEXTLINE>Invoice: 123456 </TEXTLINE>
 <TEXTLINE>Response: APPROVAL - 000 </TEXTLINE>
 <TEXTLINE>Approved: Online </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE>Total: USD $ 5.00</TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> NO SIGNATURE REQUIRED </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE> Merchant Copy </TEXTLINE>
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 <TEXTLINE />
 </RECEIPT>
</RECEIPT_DATA>
</RESPONSE>

3. Once the transaction completed, send Finish Session command to finish the payment process (payment
and line item transactions) and closes the session. Request format and expected response are provided
below.

Request

<TRANSACTION>
<FUNCTION_TYPE>SESSION</FUNCTION_TYPE>
<COMMAND>FINISH</COMMAND>
<COUNTER>1</COUNTER>
<MAC> … </MAC>
<MAC_LABEL>REG2</MAC_LABEL>
</TRANSACTION>

protocol_spec/administration/finish_session#lbl-proto-spec-finish-session-main

Response

<RESPONSE>
<RESPONSE_TEXT>SESSION finished</RESPONSE_TEXT>
<RESULT>OK</RESULT>
<RESULT_CODE>-1</RESULT_CODE>
<TERMINATION_STATUS>SUCCESS</TERMINATION_STATUS>
<COUNTER>1</COUNTER>
</RESPONSE>

Note

Orange boxes represent prompts/screens shown on the device and purple boxes represent work
being done by business logic of the application. This is an example for Retail.

Note

Refer to VOID (Message Interface) command in Payment Transactions - Retail and Restaurant chapter for the
description of request and response fields.

payment_func/retail_restaurant/void#lbl-proto-spec-retail-void-main

Duplicate Detection

Note

This Duplicate Detection section is applicable to Point Classic implementations only and requires SCA 4.0.1.x
UGP 1.1.2-2 or higher.

PWC Level Detection

Duplicate checking should be enabled on the Verifone Payment Gateway portal (Point Classic) to catch
duplicates in case another card is used between swipes on the device. Duplicate Transaction-based Auto-decline
Support (duplicate checking) is available for merchants processing any type of payment transaction. Enabling
the duplicate checking feature allows the Point platform to automatically decline transaction requests if similar
requests already appear in the open batch. Activating this feature is helpful when a single transaction request
may be accidentally submitted multiple times.
If duplicate checking is enabled (through the Corporate Portal or Store Portal), the Point platform will
automatically decline a duplicated transaction request based on the merchant setup filters; for example, a
merchant may choose to decline same Credit Card transaction based on the same amount (original transaction
amount) and account number, or based on the same amount, account number and invoice within the same batch
of transactions. Similar rule applies for Debit, Gift, EBT, and Check transactions.

Warning

For First Data Rapid Connect Pass Through Users: Duplicate checking (via the Point platform/PAYware
Connect) utilizing account number is not available for First Data Rapid Connect Pass Through implementations.
Duplicate checking utilizing invoice and transaction amount is available.

Temporarily Disabling Duplicate Checking

The feature also includes a “manual override” option. If duplicate checking is activated, but a merchant desires
to authorize multiple transactions that are identical, a flag may be sent with each payment transaction to
temporarily suspend duplicate checking. To disable duplicate transaction checking for an individual transaction,
send FORCE_FLAG and the value of TRUE with the transaction.

Device Level Detection

Duplicate checking can be enabled on the device level to identify a duplicate transaction based on transaction
amount, last 4 digits of the card etc.
Duplicate checking should be performed based on the following parameters:

DUPLICATECHECK parameter (Application Parameters) should be set as 1 to check the duplicate details
in the entire batch or as 2 to check the duplicate details for the last transaction only. This parameter can be

config_params/general_params/application_params#lbl-config-params-application-params-main

set to 0 to avoid the duplicate checking.
To exclude the transaction amount comparison for duplicate detection, SKIPAMOUNTFORDUPCHECK
parameter (Application Parameters) should be set to 1.

Temporarily Disabling or Overriding Duplicate Checking

If duplicate checking is enabled, but the merchant desires to do a transaction by overriding a possible duplicate
detection, FORCE_FLAG flag should be sent with that payment transaction to temporarily suspend duplicate
checking with a value of TRUE with the transaction.

Another way to override the duplicate checking is ALLOW_DUP_TRAN field. This field is required to send if
the previous Capture transaction in the same session was declined as “DUPLICATE TRANSACTION”. The
user needs to add ALLOW_DUP_TRAN tag (with value same as the INVOICE of current transaction) with the
current Capture command in order to override the duplicate detection and process the transaction with the card
details from previous transaction.

Note

PWC Level Duplicate Detection will be preferred over Device Level Detection for the field configurable
options.

Note

If the duplicate detection is in PWC level then DUPLICATECHECK parameter (Application Parameters) should
be disabled in Device level. If the duplicate detection is not in PWC level then it is recommended to check with
the end processor and end customer requirements before setting DUPLICATECHECK to other values in Device
level.

Store and Forward

When the Store and Forward configuration parameter (SAFEnabled in Store and Forward Parameters) is enabled
and there is loss of connectivity to the server, the payment acceptance device can locally approve transactions
below a set floor limit until such time as a total limit and max pending limit are reached. The stored transactions
are written to a queue within the payment device and once the application can connect, transactions in the SAF
queue will be sent to the gateway for processing. If the application cannot connect to the processing gateway,
and the transaction is below the SAF floor limit, then it should be locally approved and stored in the SAF queue.
Once connectivity is restored and the app is aware of this fact, then the SAF transactions will be de-queued. Two
ways to determine whether a transaction has been sent to the host:

1. Check at the gateway if the transaction is already posted, comparing the invoice, account number, and
amount.

2. Run SAF QUERY, taking note of the SAF_NUM of the record.

If the transaction amount is greater than or equal to the transaction floor limit (SAFLIMIT), then the application
will send the following verbiage in the RESPONSE_TEXT element: Transaction amount exceeded; call for

config_params/general_params/application_params#lbl-config-params-application-params-main
config_params/general_params/application_params#lbl-config-params-application-params-main
config_params/general_params/saf_params#lbl-config-params-saf-params-main

approval (or for Vantiv Direct: Authorizer is Not Currently Available) and the RESULT_CODE will be 59024.
Once the approval code is acquired, the POS would send another CAPTURE command including the
AUTH_CODE element with the approval code just acquired. This will add the transaction to the SAF queue.

If the response is timing out, then you will NOT enter a SAF situation. SAF is only triggered when the Point
application cannot reach the host to send the transaction. If it does reach it and send the transaction, but does not
receive a response, then this is a situation where you would attempt to run a LAST_TRAN to see if you can get
the response. If you still do not receive a response, and determine that the internet connection is down, then this
is a transaction that you would have to research once connectivity is restored by processing a TRANSEARCH
report (Classic implementations) to determine whether the transaction was indeed approved. If so, and the
customer made some other sort of payment, you will have the CTROUTD value in the response to process either
a VOID or CREDIT for the transaction. You would process the CREDIT if the original transaction has settled. If
not, you can process the VOID.

The DUPCHECK report would probably not be used in these sorts of cases. It would be more likely to be used if
you received a duplicate response message and you wanted to find out if the transaction was previously
approved or is a different transaction altogether.

Supported Transactions - SAF

CAPTURE (Credit card) - NOTE: SAF applies to COMPLETION, POST_AUTH, SALE, and
CLOSE_TAB transactions for Point SCA 4.0 Classic implementations. SAF applies to POST_AUTH and
SALE for Vantiv Direct implementations.
CLOSE_TAB (Credit card) – not applicable to Vantiv Direct 4.0 or Engage
VOID (based on configuration) – not applicable to Vantiv Direct 4.0 or Engage
ACTIVATE (Gift, based on configuration – not applicable to Vantiv Direct 4.0 or Engage)
AUTH (Credit card – not applicable to Vantiv Direct or Engage) - NOTE: SAF applies to both AUTH
(Pre-authorization) and AUTH with AUTH_CODE (Voice authorization). Once an AUTH transaction is
in SAF, a SAF EDIT transaction must be run to change status from PREAUTH to ELIGIBLE.
CREDIT (Credit card, based on configuration – not applicable to Vantiv Direct 4.0)

Pre-Defined SAF Result Codes

The following are the pre-defined result codes that could be received by SCA and considered for SAF (where
SafEnabled=1): 0, 18, 24, 42, 43, 30002 and 30005

Consider the Use Case where the Point application cannot connect to the gateway.

Note

The merchant is taking the full risk when choosing to invoke Store and Forward (SAF). It is important for
merchants to understand their business payment transactions balanced with the floor limits they are willing to
risk. Verifone does not guarantee host approval of stored transactions reattempted after communication is
restored.

Note

Store and Forward (SAF) support includes EMV chip transactions, except for those that use Online PIN as
CVM.

Note

Engage is newly introduced to the market and will be dynamic for a period of time. As of this publication SAF
functionality for FDRC Engage is limited.

SAF Error Codes for Fiserv/FDRC Solution

The following are the SAF error codes specific to Fiserv solution, where a Payment transaction if received by
SCA (when, SafEnabled=1) with the SAF error code, that transaction will be SAF’ed - 402, 906, 907, 909, 963.

Error
Codes

Error Description

402 TransArmor Service Unavailable

906
System Error. There is a problem with the host processing system. Call your helpdesk or
operations support.

907 Card issuer or switch inoperative or processor not available

909 System malfunction or timeout

963 Acquirer channel unavailable

Note

With condition applied:
- For a TOR transaction, if the application response back with SAF error code, then the transaction will not be
SAF’ed, however it will execute TOR retry and retry counts will not decrease.
- For other non-payment transactions, like VSP registration or CAPK update, the application will behave same as
failure, in case it receives SAF error code in the result code.

SAF_ERR_CODES.DAT file contains the SAF Error codes that are considered as Host offline/Not-Available
and Datawire Error Codes in the second line, which are SAF eligible. Refer to below table for Datawire Error
Codes.

Datawire Error Codes

SCA Application is enhanced to handle the Datawire error codes, so that the application follows to the Datawire
Specification for TOR and SAF transactions.
SAF_ERR_CODES.DAT file contains the SAF Error codes that are considered as Host offline/Not-Available

and Datawire Error Codes in the second line, which are SAF eligible. Refer to below table for Datawire Error
Codes.

If the device receives the error code which is TOR eligible and it is part of SAF_ERR_CODES.DAT file,
then application will generate the TOR and irrespective of TOR response, the application will approve the
transaction offline.
If the device receives the error code which is only SAF eligible (200,201,202) then the application should
only SAF the transaction and it should not generate the TOR.
If the device receives the error code 204 then application should generate only one TOR and it should not
attempt any more TOR retries.
If the device receives the error code 204 for reversal then application should not perform any more
reversal attempts.

Datawire
Error Code

SAF
Eligible?

TOR?
Valid

Retry?
Description

6 No No No Session context provided in the request is not valid or has expired.

200 Yes No Yes
Processor’s Host is busy and is currently unable to service this
request.

201 Yes No Yes Processor’s Host is currently unavailable.

202 Yes No Yes Could not connect to the processor’s Host.

203 Yes Yes Yes
The processor’s Host disconnected during the transaction before
sending a response.

204 No Yes No
An error was encountered while communicating with the
processor’s Host.

205 Yes Yes Yes No response from the processor’s Host

206 Yes Yes Yes
An error was encountered when sending the request to the
processor and the Host cannot continue sending packets to the
processor because the connection is broken.

405 Yes Yes Yes The request could not be processed.

505 Yes Yes Yes The request could not be processed.

8 Yes Yes Yes The request could not be processed.

SAF Error Codes for GSC Solution

The following are the error codes specific to GSC solution, that could be received by SCA (when,
SafEnabled=1)

Error Codes Error Description
500 HTTP Error codes from GreenBox

502 HTTP Error codes from GreenBox

503 HTTP Error codes from GreenBox

9112 Card issuer unavailable

9200 Transaction refused before sending to acquirer

8001 Rejected, unable to perform request at current time, try later

9103 Re-enter transaction

SAF Error Codes for UGP Solution

The following are the error codes specific to UGP solution, that could be received by SCA (when
SafEnabled=1).
0|14|18|24|43|44|45|55|61|68|30001|30001|30002|30024|58911|59024|58094

Error
Codes

Error Description

0 UNKNOWN

14 COM Error with Processor/Card Issuer, Status unknown

18 COM Error with Processor/Card Issuer, Status unknown

24 Tokenization Auto-Decline or Host Not Available. Transaction not Attempted

43 COM Error with Processor/Card Issuer, Status unknown

44 COM Error with Processor/Card Issuer, Status unknown

45 COM Error with Processor/Card Issuer, Status unknown

55 COM Error with Processor/Card Issuer, Status unknown

61 COM Error with Processor/Card Issuer, Status unknown

68 COM Error with Processor/Card Issuer, Status unknown

30001
Backend Payment Engine is not accessible. OR
Internal System Error - PWC Could not Send to Payment Engine. Transaction was not
attempted.

30002 Internal System Error- PWC Could not Connect to Payment Engine Transaction was not attempted

30024 PWC Instructed Device to SAF (Enhanced SAF Functionality)

59024 Com Error

58911 P2PE Error where P2PE Server did not return a Decrypted Blob

58094
P2PE Error attempting to request Decryption of P2PE Service. Normally a Connectivity issues
with GBX Solution.

Transaction Below Floor Limit

Transaction is locally approved and added to the SAF queue. This is assuming that the Total Transaction
Limit and Max Pending Limit have not been reached. If it has, then no more SAF transactions will be
allowed. Instead, you will receive a message that the offline amount has been exceeded.
SAF_NUM is returned in the response to the POS.
Transaction can be removed from the SAF queue by using the SAF REMOVE command.
If not removed, transaction will be processed once connectivity is restored. There is no guarantee that the
transaction will be approved. The processing platform could decline the transaction. Because of this
possibility, there is a great need on behalf of the merchant to discuss what both the SAF Floor limit should
be and what the Total Transaction Limit should be. The Total Transaction Limit is the total dollar amount
that can be in SAF. This is basically dollars at risk of not being approved.
The POS should query the device’s SAF transactions periodically to determine the status of each
transaction. For instance, if a SAF’d transaction reports a status indicating processing was successful and

the transaction was approved, then the merchant can expect to be funded for that transaction.

If transactions are still pending in SAF storage, the device should not be upgraded, reconfigured, etc. until those
transactions have been dequeued.

Transaction Above Floor Limit

If the transaction exceeds the transaction floor limit (and the total transaction floor limit has not been reached),
the transaction is rejected with a message indicating that the offline amount is exceeded. The message also
directs the user to call for a voice approval.

Voice Approvals

Once a Voice Approval is acquired, the transaction would need to be submitted to the Point application as
a CAPTURE with AUTH_CODE.
The application will prompt for card data entry for this transaction.
Once data is gathered, the application will attempt to connect to the gateway. If connection is unavailable,
then this transaction will be added to the SAF queue even though it is above the floor limit.
SAF_NUM is returned in the response to the POS.
Transaction can be removed from the SAF queue by using the SAF REMOVE command.
If not removed, transaction will be processed once connectivity is restored. The risk of rejection for this
transaction by the processor is minimal as it has already been approved. An instance where they may
decline the transaction would be if it has been several days since the original approval was given.

Other Transactions

If you submit a transaction other than CAPTURE, AUTH, or CLOSE_TAB, the application will gather all
card data and attempt to process the transaction. However, if the connection cannot be established, the
transaction will fail. A message indicating that either the transaction type is not allowed in an offline
situation or that there was a communication failure will be returned to the POS.
Devices allow SAF of VOID, ACTIVATE, and CREDIT (Refund) transactions dependent on parameter
configuration. See note below.

When the Store and Forward configuration parameter is enabled and there is loss of connectivity to the server,
the payment acceptance device can locally approve transactions below a set floor limit until a total limit is
reached. The stored transactions are written to a queue within the payment device and the RESPONSE_TEXT
element will say Transaction Approved Offline. Once the application can connect, transactions in the SAF queue
will be sent to the Point Gateway for processing.

If the transaction amount is greater than or equal to the transaction floor limit (SAFLIMIT), then the application
will send the following verbiage in the RESPONSE_TEXT element: Transaction amount exceeded; call for
approval (or for Vantiv Direct: Authorizer is Not Currently Available) and the RESULT_CODE will be
59024. Once the approval code is acquired, the POS would send another CAPTURE command including the
AUTH_CODE element with the approval code just acquired. This will add the transaction to the SAF queue.

Note

In the above scenario, RESULT_CODE 59024 will be returned, when STORECARDFORPOSTAUTH
parameter is enabled to store the card details for post authorization. Refer to Application Parameters for more
details on the parameter.

Note

Store and Forward (SAF) is applicable to credit card CAPTURE (SAF applies to COMPLETION,
POST_AUTH, SALE, and CLOSE_TAB transactions), AUTH, and credit card CLOSE_TAB transactions. See
section Transactions Supported for Store and Forward for information specific to your implementation. Devices
allow SAF of Gift ACTIVATE transactions if configuration parameter ALLOWGIFTACTIVATETOSAF = 1.
Devices allow SAF of Credit Card CREDIT transactions if configuration parameter AllowRefundToSAF = 1.
Devices allow SAF of VOID transactions if configuration parameter allowvoidtosaf = 1

Negative SAF Response Scenarios

Scenario POS Response Device Display

TRANS_AMOUNT=TransactionFloorLimit,
SAFLimit=TransactionFloorLimit

<RESPONSE>
<RESPONSE_TEXT>Offline
Transaction Amount
Exceeded,
Please Call for Voice
Approval</RESPONSE_TEXT>
<RESULT_CODE>59024</
RESULT_CODE>

Sale DECLINED
Transaction amount
exceeded; call for
approval

TRANS_AMOUNT>TransactionFloorLimit,
SAFLimit=TransactionFloorLimit

<RESPONSE>
<RESPONSE_TEXT>Offline
Transaction Amount
Exceeded,
Please Call for Voice
Approval</RESPONSE_TEXT>
<RESULT_CODE>59024</
RESULT_CODE>

Sale DECLINED
Transaction amount
exceeded; call for
approval

TRANS_AMOUNT=SAFLimit,
SAFLimit<TransactionFloorLimit

<RESPONSE>
<RESPONSE_TEXT>Offline
Transaction Amount
Exceeded,
Please Call for Voice
Approval</RESPONSE_TEXT>
<RESULT_CODE>59024</
RESULT_CODE>

Sale DECLINED
Transaction amount
exceeded; call for
approval

config_params/general_params/application_params#lbl-config-params-application-params-main

Scenario POS Response Device Display

TRANS_AMOUNT>SAFLimit,
SAFLimit<TransactionFloorLimit

<RESPONSE>
<RESPONSE_TEXT>Offline
Transaction Amount
Exceeded,
Please Call for Voice
Approval</RESPONSE_TEXT>
<RESULT_CODE>59024</
RESULT_CODE>

Sale DECLINED
Transaction amount
exceeded; call for
approval

Transactions Not Allowed on SAF

<RESPONSE>
<RESPONSE_TEXT>SAF NOT
ALLOWED</RESPONSE_TEXT>
<RESULT_CODE>999998</
RESULT_CODE>

Sale DECLINED
Unable to Authorize

SAFMaxPending is reached

<RESPONSE>
<RESPONSE_TEXT>SAF NOT
ALLOWED MAX RECORDS
REACHED</RESPONSE_TEXT>
<RESULT_CODE>999997</
RESULT_CODE>

Sale DECLINED
Transaction Not
Allowed

TotalFloorLimit is reached

<RESPONSE>
<RESPONSE_TEXT>SAF NOT
ALLOWED - SAF TOTAL LIMIT
EXCEEDED</RESPONSE_TEXT>
<RESULT_CODE>999995</
RESULT_CODE>

Sale DECLINED
Transaction Not
Allowed

Tokens

Card Tokens

Card based tokens provide the ability to process using tokens as set up within the merchant’s store hierarchy.

Note

This section is only applicable to host based processors/gateways supporting card based token implementations.

PAYMENT transaction responses may conditionally contain a two-way token in the RESPONSE element (in a
non-token transaction). PAYMENT transaction requests may conditionally contain a token in the REQUEST
element (when token is known).

Field Value/Example Comments

CARD_TOKEN
Ex:
7987654321098765

The Card Token field is returned in AUTH, CAPTURE, and CREDIT
(Refund) SCI response messages to the POS. It can also be returned in
most GIFT administrative transactions. The processor/gateway will give
the token to the payment device and SCA will return CARD_TOKEN in
the SCI response message to the POS. The card token is processor-based
or gateway-based and can represent a unique card.

CARD_TOKEN
Ex:
7987654321098765

CARD_TOKEN can be used in subsequent AUTH, CAPTURE, or
CREDIT requests to represent the card.

Refunds

If you receive CARD_TOKEN and accompanying fields (e.g., BANK_USERDATA) in the response, then
refunds and follow-on transactions must be card token based.

Transaction Tokens

The transaction-based token – CTROUTD and TROUTD – are to be used within the same gateway Client ID.

Example 1: A customer purchases an item and then two weeks later, the customer wants to purchase another
item in the same store. You could populate with the TROUTD (or CTROUTD) value from the original
transaction and the new transaction would not prompt for card data – it would use what was “on file” at the
gateway.

Example 2: If a customer returns the same day to the same store to return a purchase, you would use the
CTROUTD of the original transaction to process a VOID. If this was a different store/different Client ID, you
could not do either of the previous examples. You would have to process new transactions that gather the new
card data.

In production, TROUTD and CTROUTD values have a ‘shelf life’ of 10 months. A new TROUTD is received
with each transaction.

Receipt Printing

The SCA receipt is generated in the format provided in html files.
Verifone will provide the full EMV receipt XML plus individual tags for those integrators looking to craft their
own receipts. Refer to Receipt Data in Response section for more details.

SCA Generated Receipt Line Text

Maintains automatic compliance with EMV and regulatory requirements
Plain looking receipts
One receipt per authorization

Parsed Response and Custom Generated Receipt

Full control of the receipts
Better ‘Look and Feel’
Ability to aggregate split tenders

receipt_data#lbl-receipt-data-main

Requires integrator to parse and print EMV compliant tags

Last Transaction

General best practice is to send the LAST_TRAN report command if a timeout is received or if a transaction
response is not received at all. It is recommended practice – but not limited practice - for the POS to use this
command for any case where the disposition of an attempted payment transaction is unknown (e.g.,
communication loss between the POS and SCA device while a transaction is in flight). The Last Transaction
report is used to determine the status of the most recent transaction processed from that particular
device/workstation. There is no need to habitually run the LAST_TRAN report.
A very important element of LAST_TRAN is STATUS_CODE. This will tell you if the transaction was
approved, as the codes for this element are the same as those for the RESULT_CODE. If you receive a
STATUS_CODE of 6, then you know that the transaction was DECLINED. If STATUS_CODE is 4 or 5, you
know it was approved. You can then look at the AUTH_CODE, if a CAPTURE or AUTH, and CTROUTD, etc.
to get the rest of the details.

Important Considerations and Ramifications of Not Doing Last Transaction Report

Ramifications of not doing LAST_TRAN will manifest in duplicate charges to the card holder.
LAST_TRAN is designed to give the POS the option to review the state of the last transaction performed. There
are times in which the transactional approval or decline doesn’t make it back to the POS, either due to network
error conditions or potential situations in which the POS times out on the AUTH/CAPTURE request.
When the POS is in a position where the status of the last transaction is undetermined, then the first step is to use
the last transaction report and determine if the invoice and transaction amount matches the prior
AUTH/CAPTURE request. If yes, the status is now known and a second request of the same transaction is not
necessary, unless declined.
If the LAST_TRAN cannot match the invoice and amount of the prior request, there is potential that the
transaction has gone into SAF and SAF QUERY should be run to determine if the invoice and amount match a
transaction in the SAF queue.

Refer to Last Transaction command for more details.

Time Out Reversals (TOR) Functionality

Time Out Reversals (TOR) requests will be posted by the application for ADS (PRIV_LBL) PRE_AUTH,
REFUND and Canadian Debit.

TOR is applicable for ADS (PRIV_LBL) and for Canadian Debit (Interac) cards in UGP solution. When there is
a timeout between the gateway and processor, TOR is handled by the gateway itself. If there is a timeout
between the terminal and the gateway, then the terminal performs auto last transaction to determine whether the
transaction was approved or declined. However, in case of UGP, the application validates the invoice, account
number, command, payment type, and transaction amount fields present in the auto-last-transaction response
packet. In UGP, configuration parameter TORRETRYCOUNT is required to set the number of times TOR
requests will be posted by the application for ADS (PRIV_LBL) PRE_AUTH, REFUND and Canadian Debit.

In TOR functionality with FDRC, the TOR occurs for all payment transactions and for all cards when the
terminal experience a response timeout. The TOR performed in the FDRC is essentially a voided transaction of
the previously performed transaction (last transaction). In FDRC, configuration parameter TORRETRIES_1 is

protocol_spec/reports/last_transaction#lbl-proto-spec-reports-last-transaction-main

required to set the number of times TOR requests will be posted by the application.

The following are TOR response codes that could be received by SCA and applicable for GSC only.

Error Codes Error Description
504 HTTP Error codes from Green Box

9111 Card issuer timed out

9999 General Error - Unknown or Unspecified reason

9125 Database error

9109 System malfunction

9201 Transaction refused after sending to acquirer

Handling POS Disconnection and Timeout

When POS gets timed out or disconnected due to network or communication failures during any ongoing
payment transaction and once the connection is reestablished, the best practices are:

To send the secondary port Status command to know the current status of the terminal. Refer to Secondary
Data Values table in Status command response for more details on the various possible values.

If payment is attempted, then send LAST_TRAN command to understand the status of the last transaction
and compare it to the current ongoing transaction to perform the necessary action as:

If the LAST_TRAN comparison indicates that the attempted transaction is not a match,
then the POS could re-perform the transaction.
If the LAST_TRAN comparison indicates a match, then the POS could print a receipt
and Finish the session.

In case, the Secondary Port STATUS command returns 13 (IN SESSION PAYMENT), then POS should
decide, whether to send Secondary Port CANCEL command and followed by FINISH Session. However,
application would not allow CANCEL command in certain scenarios like, if the transaction is processing
to Host.

Hence, based on the overall Secondary Port STATUS, POS should perform the next necessary action,
whether to wait to process the transaction or VOID/CANCEL the transaction and followed by FINISH
Session command.

protocol_spec/secondary_port/status#lbl-proto-status-sec-data-value-main
protocol_spec/secondary_port/status#lbl-proto-status-sec-data-value-main

