
https://verifone.cloud/docs/sca-functional-specification/features/health_monitor_events
Updated: 23-Jul-2025

Health Monitor Events

This section outlines a critical enhancement to Verifone’s remote diagnostics solutions. This section provides the
necessary background, identifies the problem statement, and offers an overview of the proposed solution.
Subsequent sections delve into the operational aspects, including the target software stack required to implement
the enhancements, a configuration guide for deployment, and other integration details.

Note

The Payment Application Health Monitor feature is available only for customers with VHQ premium licence.

Background

Remote diagnostics play a crucial role in reducing the total cost of ownership for card payment acceptance
devices. Verifone currently offers robust remote diagnostics capabilities through its Terminal Management
System (TMS) known as Verifone HQ (VHQ). The existing capabilities include:

Software Log Export: ?Ability to export detailed software logs for analysis.
Remote Reboot:?Capability to remotely reboot the device.
Diagnostic Alerts: ?The device can alert the VHQ server with standard and custom diagnostics, such as
low memory warnings, faulty battery notifications, and the number of reboots.

The alert mechanism primarily focuses on the remote diagnosis of hardware issues, facilitating proactive
maintenance. However, recent production incidents caused by incorrect software and configuration updates have
adversely impacted the devices’ ability to process payments. These incidents underscore the need for enhanced
remote diagnostics of the application software on the device.

Problem Statement

Despite comprehensive efforts in functional and operational testing of payment applications, discrepancies
between test and production environments, along with user errors in terminal management systems, can
adversely impact the operational integrity of payment devices. In the worst-case scenario, erroneous software or
configuration updates could render devices incapable of processing transactions, resulting in significant revenue
loss for merchants.

/docs/sca-functional-specification/features/health_monitor_events

Currently, operational and functional anomalies are reported by end users, such as store managers, which
triggers reactive troubleshooting and root cause analysis by Verifone’s technical support and engineering teams.
This reactive methodology is suboptimal and highlights the necessity for Verifone to implement proactive health
monitoring and anomaly detection for payment devices.

There is a strategic opportunity to augment Verifone’s remote diagnostic capabilities to encompass
comprehensive health monitoring of application software deployed on payment devices. It is imperative to
establish systematic checks and balances to proactively identify and mitigate issues arising from unintentional
operational or human errors during remote operations. This monitoring should be integrated with advanced
remote diagnostics and automated recovery mechanisms wherever feasible.

Solution

A dedicated diagnostics application, known as the Global Diagnostic Application (GDA), has been developed to
collect health monitoring parameters via events from the payment application and transmit them to the Event
Service on the Verifone server. GDA functions as a background service, capable of receiving event notifications
from any application software on the device. It subsequently forwards these events to the Event Service.
Additionally, the application autonomously monitors critical system-level parameters such as signal strength,
network availability, and battery level.

The Event Service publishes these events to any subscriber via webhooks, with VHQ being one such subscriber.
This architecture enables both VHQ and non-VHQ-based solutions to utilize this remote diagnostics feature.

Intended Audience

This guide is designed for users of the Health Monitor feature with the SCA Payment Application, including:

Helpdesk Teams - Troubleshooting and diagnosing issues based on captured events.
Integrators - Understanding event structures, integration with customer dashboards, and debugging.
Customers - Gaining insights into trending issues in production and being proactive to arrest them.
Customers can have access to these payment app health monitors via webhooks. This is available only for
customers with VHQ premium licence.

Initialization of Functionality

This section outlines the essential prerequisites and steps required to begin using the Health Monitor feature in
your lab environment to start with and then in production.

To get started, ensure that you have a terminal equipped with the required software stack that supports the Health
Monitor capability. Once enabled, the terminal will automatically begin transmitting health monitor events to the
Event Service on the Verifone server.

The GDA application is responsible for posting these events to the Event Service. Therefore, it is critical that
your network allows outbound communication to the Event Service URL, which is specified in the Whitelisting
section below. Please ensure that corresponding URL is accessible from your lab and prod environment to avoid
communication issues.

To monitor these events on your end, you must register a Webhook with Verifone. This will allow the Health
Monitor events to be pushed to your endpoint in near real-time, enabling proactive monitoring and diagnostics.

Finally, this section also covers the relevant configuration parameters on the GDA and SCA to successfully
enable and manage the Health Monitor functionality.

Minimum Software Versions

For Terminals on ADK 4.7.x

Component Version Details
ADK 4.7.42

OTA (For M440/M424 Only) 3.42.2

SCA UGP Solution 4.x.41-1

Global Diagnostic App (GDA) 2.0.0

For Terminals on ADK 4.10.x

Component Version Details
ADK 4.10.5.2

SCA UGP Solution 4.x.41-1

Global Diagnostic App (GDA) 2.0.0

Installation Sequence for GDA Setup

The Following Sequence is for upgrading existing solutions with latest software mentioned above to have GDA
running.

ADK
OTA (Valid for M440/M424 Only)
SCA Solution
SCA Configuration
GDA and GDA configuration

Whitelisting URLs/IP Address

The Global Diagnostic App connects to the Verifone Event service to post the events. To ensure seamless
connectivity and functionality of the Global Diagnostic App, it is essential to whitelist the following URLs/IP
addresses on your network.

URL Version Details
STAGING URL: cst2.test-
gsc.vfims.com/event-service/events/device

Global Diagnostic App uses this end point to connect and post
events in the staging environment for customer testing.

PROD URL: gsc.verifone.cloud/event-
service/events/device

Global Diagnostic App uses this end point to connect and post
events in the Production environment.

Registering for Webhooks

Customers can register to webhooks from Verifone and receive notifications about specific events. Here’s how
you can set up and monitor events using webhooks:

1. Registering for Webhooks To start monitoring events, you need to register your webhook URL with
Verifone. Follow these steps:

Provide your webhook URL: This is the endpoint where you want to receive event
notifications.
Specify the events: Indicate which events you want to monitor (e.g., Device Registration
Failure, Encryption Setup Failure).
Authentication: Ensure your webhook endpoint is secured and can authenticate incoming
requests from Verifone.

2. Webhook Event Format When an event occurs, Verifone will send a POST request to your webhook URL
with the event data. The data will be in JSON format and include details such as event type, timestamp,
device information, and specific event data. Here is a sample format:

{
 "objectType": "DeviceEvent",
 "eventId": "d94a63e5-3018-4265-a0da-36783d6661ad",
 "eventDateTime": "2025-03-26T05:33:27.001Z",
 "recordId": "0",
 "itemId": "0",
 "entityUid": "76e84daa-c954-4c6a-8f7f-09758c078669",
 "eoEntityUid": "76e84daa-c954-4c6a-8f7f-09758c078669",
 "source": "device",
 "received": "2025-03-26T05:33:28.500035811Z",
 "eventType": "",
 "content": {},
 "deviceType": "",
 "serialNumber": ""
}

3. Validating Webhooks in Non-Production Environment: Before deploying webhooks in a production
environment, it’s crucial to validate them in a non-production setting. Use lab devices to trigger the events
and ensure your system correctly processes and responds to these events.

4. Querying Events from Specific Terminals: You can query events on the webhook from specific terminals
by using the terminal’s serial number or other identifiers. This allows you to filter and monitor events for
particular devices, ensuring targeted diagnostics and troubleshooting.

5. Handling Webhook Notifications: When your system receives a webhook notification, it should:
Parse the JSON data: Extract relevant information such as event type, timestamp, and device
details.
Log the event: Store the event data for future reference and analysis.
Trigger actions: Based on the event type, initiate appropriate actions such as alerting support
teams, updating dashboards, or performing automated diagnostics.

6. Monitoring Dashboard Set up a monitoring dashboard to visualize the events received via webhooks. This
dashboard can provide real-time insights into the health of your payment devices, highlight critical issues,
and track trends over time.

Note

Please submit a JSD ticket with the webhook URL and the list of events you wish to monitor/register. Verifone
support team will set this up so you can start receiving notifications via webhooks.

Related Configurations

Global Diagnostic App

For GDA the following configurations are part of the GDAConfig.ini under section [GDA].

Parameter Name Description Allowed Values Default Value

PRIMARYADDRESS

End point of the
Verifone server
where the Events
from Global
diagnostic App
are posted.

String of up to 100 characters.
gsc.verifone.cloud/event-
service/events/device
cst2.test-
gsc.vfims.com/event-
service/events/device

cst2.test-
gsc.vfims.com/event-
service/events/device

THROTTLINGINTERVAL

Number of
minutes over
which the
different
terminals in
customer estate
should wait
before posting the
events to
Verifone server.
This helps avoid
choke up of the
Network
Bandwidth during
24-hour reboot.

Numeric (minutes), 0 - 99 minutes 5

Parameter Name Description Allowed Values Default Value

SIGNALTHRESHOLDLIMIT

This parameter
defines the signal
level in DBM
below which the
GDA app will
notify the
Verifone server as
a Poor Signal
Strength. This
applies to
GPRS/WiFi
Signal

DBM Values: -100 to -1 -70

ENTITYUID

This is Verifone
generated
Identifier to the
particular
merchant.

String
Specific value to the
merchant

SCA

Parameter Name Description Allowed Values
Default
Value

HEALTHMONITOR

This parameter is used
to enable or disable
sending SCA
application health
monitor parameters as
diagnostics events
messages to GDA
(Global Diagnostic
App), which will be
forwarded to the
Verifone server to
notify the consumer.

0 - Do not Send Events to GDA
1 - Send Events to GDA

0

Parameter Name Description Allowed Values
Default
Value

SCAPERFMETRIC

SCA application
supports a feature of
generating performance
metric data for each
command executed and
send the response back
to the POS. This
parameter also enables
Posting this summary
as an event to Verifone
server.
SCAPERFMETRIC
parameter is used to
enable or disable this
feature. This feature
will be disabled by
default.

0 - Does not calculate and return the
Performance Metrics.
1 - Calculate and Return Performance Metric
in POS Response and send to GDA if GDA
events are enabled

0

HEALTHMONITOR_EXCLCMDS

This parameter is used
to set the list of
commands excluded
from the diagnostics
Event Type
‘ApplicationException’.
The list of commands
should be presented as
separated by pipe (|).

Alphanumeric Maximum length - 50 Format:
[pipe]commandName1[pipe]commandName2[pipe]

Blank

Architecture and Design

SCA payment application is responsible to identify the occurrence of specific events during the application
flows, classify them and appropriately notify the Global diagnostic app regarding the event. The payment
application provides the required data along with the event message which will help troubleshoot or gain further
understanding regarding the event.

The events are in a JSON Format which are described in the further sections of this document.

There are 21 events as on the publication of this document and these Events can be classified as Critical and
Non-Critical events. Critical events are those which may cause the payment application to fail initialization thus
rendering it useless or when terminal does not have connectivity to the host causing SAF build up. The Critical
events are sent to GDA as soon as they occur, allowing event consumers to act on them immediately. The Non-
Critical are sent to GDA of once every 24 hours. This typically occurs after the 24-hour reboot.

These Events posted into Verifone event server will allow customers to register webhooks to notify them directly
during the occurrence of the events. This allows customers the flexibility to maintain the required dashboard on
their end for monitoring and acting on such events. Alternatively, customers can choose to sign up for sending
emails and pulling additional diagnostic data from the terminals during the events.

Solution Architecture Overview

Events Throttling

To reduce the probability of network congestion caused by all terminals in customer estate posting the
Diagnostic details at the same time after the 24-hour reboot occurs, the application supports Throttling logic.

The Throttling logic ensures that different terminals post the non-critical events at different instances, and the
timing is calculated based on the Serial number as shown below.

If the serial number of the terminal is 321-456-789 and throttling window is set to 600 seconds (10 minutes),
then the Throttling time is calculated as 321456789 Mod 600 which sets the throttling window to 189 seconds.
The events will be posted 189 seconds after the 24-hour reboot window for such a terminal.

Events Format

Webhook Format:

Following is the generic format for the events that a subscriber will receive as a webhook notification.

Content Type: application/json

{
 "objectType": "DeviceEvent",
 "eventId": "d94a63e5-3018-4265-a0da-36783d6661ad",
 "eventDateTime": "2025-03-26T05:33:27.001Z",
 "recordId": "0",
 "itemId": "0",
 "entityUid": "76e84daa-c954-4c6a-8f7f-09758c078669",
 "eoEntityUid": "76e84daa-c954-4c6a-8f7f-09758c078669",
 "source": "device",
 "received": "2025-03-26T05:33:28.500035811Z",
 "eventType": "",
 "content": {
 },
 "deviceType": "",
 "serialNumber": ""
}

Where,

Fields Description

objectType:

Type: string

Value: DeviceEvent

Type of Event or Object. Events from Health monitor and SCA would send value of
DeviceEvent.

eventId:
Type: string <uuid>

The internally assigned identifier for the event.

eventDateTime:

Type: string <date-time>

The timestamp when the event occurred. This should be in local time with an offset to UTC
specified to ensure this can be converted between time zones.

recordId: Type: string

itemId: Type: string

Fields Description

entityUid:
Type: string <uuid>

The Verifone allocated unique id for the entity this webhook/event is for.

eoEntityUid:
Type: string <uuid>

The internally assigned identifier for the estate owner/customer for the event.

Source:

Type: string

Value: device

This internally assigned value indicates that the source of the event is from the Device. All
health monitor events will have a source assigned to Device.

Received:
Type: string <date-time> (eventDateTime)

This timestamp indicates when the event was received to the Verifone server Database.

eventType:

Type: string

The value indicates the type of Event. The various possible event Types is provided in the next
section.

content:

Type: object

The associated event data. This is optional and if specified will vary according to the event
type. Refer to Supported Device Events setion for more details on the Event Formats of all
device events.

deviceType:

Type: string

This value indicates the Device model from which the event has originated.

Different Values supported - M400, M440, M424, P400, V400, E285, E280, P200

serialNumber:
Type: string.

The device hardware serial number.

The table above describes the basic event format to which all events must adhere. The following section provides
a detailed overview of each event type and outlines the content fields specific to each event. The other fields are

generic and apply to all events.

Supported Device Events

1. Device Registration Failure

Fields Description
Event Name: DeviceRegistrationFailure

Priority: Critical

Description: This Critical event is triggered when the terminal is Unable to successfully perform Device Registration with the Gateway or Processor. For Some Direct to host solutions such as WorldPay this event is Not applicable since Device Registration is not needed.

Possible
Cause:

This event may occur for the following reasons:
Merchant ID/Terminal ID details are missing during device registration.
Terminal is unable to make a connection to the host for registration.
Terminal has not been onboarded into the Gateway.
MID/TID has not been onboarded on the processor end.

Recommended
Action:

Ensure Merchant ID/Terminal ID details are configured correctly on the terminal in case of direct to host solutions.
Ensure Network Connectivity is intact.
Ensure Gateway/Processor onboarding is intact.

Event Format:

{
 "clientIdentifier": "17345800010001",
 "errorCode": "2029999",
 "failureReason": "Device Registration Failed",
 "merchantIdentifier": "005059233998",
 "responseText": "NOT_AUTHORIZED"
}

Field
Description:

clientIdentifier - This field includes the CLIENT ID associated with the terminal. This is exclusive to Payware Connect Based SCA solution. This value would be available only if the device has previously been registered or if the Client ID was returned in the device registration response.
errorCode - This field is the error codes are from the Host response code / Result Code values.
failureReason - Device Registration Failed.
merchantIdentifier - Merchant ID from the Processor/Gateway if available.
responseText - Response Text from the Processor/Gateway if available.

2. Encryption Setup Failure

Fields Description
Event Name: EncryptionFailure

Priority: Critical

Description: This critical event is triggered when the Encryption Setup fails on the terminal. This is an indication that card data will not be encrypted and hence application stops the terminal from initializing if this step has failed.

Fields Description

Possible
Cause:

This event may occur for the following reasons:
Encryption keys not injected on the terminal. Valid for VSP, ADE, AESDUKPT encryption modes.
VSP Registration failure due to a host setup issue, or incorrect keys or terminal configuration.
VCL Bin update failure.
TRA Keys Download Failure.
Terminal is unable to make a connection during Encryption Registration with processor.

Recommended
Action:

Ensure encryption keys are loaded to the terminal.
Ensure Network connectivity is intact.
Ensure processor setup is accurate.
Ensure VCL Bin Update File configuration matches that at the server.

Event Format:

{
 "clientIdentifier": "17345800010001",
 "errorCode": "2029999",
 "failureReason": "Key Exchange Error",
 "merchantIdentifier": "005059233998",
 "responseText": "NOT_AUTHORIZED"
}

Field
Description:

clientIdentifier - This field includes the CLIENT ID associated with the terminal This is exclusive to Payware Connect Based SCA solution.
errorCode - This field is the error codes are from the Host response code/Result Code values.
failureReason - Key Exchange Error or VSP BIN UPDATE FAILED.
merchantIdentifier - Merchant ID from the Processor/Gateway if available.
responseText - Response Text from the Processor/Gateway if available.

3. Test Sale Failure

Fields Description
Event Name: PreambleSaleFailure

Priority: Critical

Description: This critical event is triggered when the terminal fails to successfully complete the Test Sale or Test Void during the initialization process. Installers usually perform this step to verify the setup after installation. In some merchant configurations, this step is disabled, so the event will not be generated or applicable for them.

Possible
Cause:

This event may occur for the following reasons:
Terminal is unable to make a connection to the host for the test sale/test void.
Gateway/Processor Declining the transactions to other issues.
Card Not supported.
Timeout or Cancellation during the test sale card read screen flow.

Fields Description

Recommended
Action:

Ensure the card used is applicable for the terminal configuration and is a valid card.
Ensure Network Connectivity is intact.
Ensure Gateway/Processor configuration allows the usage of the specific card used.
If the decline originates from the processor, contact the processor or bank to determine the cause.

Event Format:

{
 "clientIdentifier": "17875200010001",
 "errorCode": "6",
 "failureReason": "Test Sale Failure",
 "merchantIdentifier": "000091156455",
 "responseText": "TRANS DENIED ",
 "terminalIdentifier": ""
}

Field
Description:

clientIdentifier - This field includes the CLIENT ID associated with the terminal. This is exclusive to Payware Connect Based SCA solution.
errorCode - This field is the error codes are from the Host response code/Result Code values.
failureReason - Test Sale Failure or Test Void Failure.
merchantIdentifier - Merchant ID from the Processor/Gateway if available.
terminalIdentifier - Terminal ID from the Processor/Gateway if available.
responseText - Response Text from the Processor/Gateway if available.

4. Canadian Debit MAC Key Setup Failure

Fields Description
Event Name: MACKeyLoadFailure

Priority: Critical

Description: This Critical event is posted when the terminal is Unable to successfully update the MAC Key necessary for performing MACing of the Canadian Debit Transactions.

Possible
Cause:

This event may occur for the following reasons:
Failure to download the MAC Working Keys from the Processor/Gateway.
Absence of the MAC Master Keys on the terminals.
Incorrect configuration
Missing Packages needed for Storing/retrieving the MAC Keys.

Recommended
Action:

Ensure the processor is properly setup for returning the MAC Keys for the terminal.
Ensure Network Connectivity is intact.
Ensure MAC Master keys are injected on the terminal.
Ensure application configurations for MACing functionality is proper.

Fields Description

Event Format:

{
 "clientIdentifier": "17884700010001",
 "errorCode": "43",
 "failureReason": "MAC KEY Update Request Error",
 "merchantIdentifier": "700000209468",
 "responseText": "Check Open Batch and Processor to Verify Transaction has been processed "
}

Field
Description:

clientIdentifier - This field includes the CLIENT ID associated with the terminal. This is exclusive to Payware Connect Based SCA solution.
errorCode - This field is the error codes are from the Host response code / Result Code values. This will be returned if available.
failureReason - MAC KEY Update Request Error.
merchantIdentifier - Merchant ID from the Processor/Gateway if available.
responseText - Response Text from the Processor/Gateway if available.

5. Application Abrupt Restarts or Abrupt Terminal Reboots

Fields Description
Event Name: AppAbruptRestarts

Priority: Critical

Description:
This Critical event is posted when the application detects the terminal rebooted or application restarted in between the transaction flow or when it is not the
idle screen.

Possible
Cause:

This event may occur for the following reasons:
Application Exception that may force the merchant to reboot the terminal.
Application not responding to the commands from the POS forcing merchant to reboot.
Application restarts when ADK kills and restarts the application due to memory issues.
Installation of packages occurring during the transaction flow and consequently restarting the application.

Recommended
Action:

Capture the required diagnostics from the terminal such as Terminal logs.
Identify from the store if there was any reason terminal was manually restarted or any power failures at the store.
Capture POS Logs.
Check for any VHQ installations scheduled for the incorrect time.

Event Format:
{
 "Data": "Last Active Operation before terminal rebooted was : CAPTURE, inside an Active Session"
}

Field
Description:

Data - This field indicates the state of the terminal before the unexpected reboot occurred. It provides the last active command information and denotes if the
terminal was within an Active session or not.

6. Host Connection Status

Fields Description
Event Name: HostConnectionStatus

Fields Description
Priority: Critical

Description:
This Critical event is posted when the application detects that the connection to the payment gateway or processor is lost due to network issues or processor not reachable. The status field will display ConnectionFailure whenever the connection to the host is lost. Additionally, an event will be triggered when the connection is restored. This event will not be triggered for every
successful connection to the host.

Possible
Cause:

This event may occur for the following reasons:
Loss of connectivity to the host/processor.
SAF error code from the Gateway indicating a loss of connection to the end point.
Network loss.

Recommended
Action:

Capture the required diagnostics from the terminal such as Terminal logs.
Validate the network availability to the terminal.

Event Format:

{
 "Data": " Terminal Could not connect to cert.api.vfipayna.com",
 "errorCode": "2",
 "failureReason": "Host Connection Failed",
 "status": "ConnectionFailure",
 "transactionIdentifier": "000262|1.00|400296******4803|DEBIT|VISA"
}

Field
Description:

Data -
If the status is Connection Restored - “Terminal Connection to Host restored”
If the status is Connection Failure - “Terminal Could not connect to”, followed by the URL.

errorCode - This field is the error codes are from the Host response code / Result Code values. This will be returned if available
failureReason - Host Connection Failed - Only if status is ConnectionFailure
Status - ConnectionFailure or ConnectionRestored
Transaction Identifier - Invoice | Transaction Amount (Two decimals implied) | Masked PAN | Payment Type | Card Brand

Payment Type - CREDIT, DEBIT, EBT, GIFT, FSA, PRIV_LBL
Card Brand - VISA, MASTERCARD, DISCOVER, AMEX, UNIONPAY, JCB, DEBIT

7. Multiple SAF Retry

Fields Description
Event Name: SAFMultipleRetry

Priority: Critical

Description:
This Critical event is posted when the application detects that the same SAF Transaction is being forwarded more than 5 times. This event signifies a potential SAF stuck situation and will need to be addressed as early as possible. There is also the potential charging of the same card if the SAF is getting retried multiple times which needs to
be investigated.

Possible
Cause:

This event may occur for the following reasons:
End Processor/Gateway has rejected the transaction previously and returned a SAF error code. And if this repeats 5 times.
Error on the terminal causing failure to update the status of the SAF transaction even if it is already processed.

Fields Description

Recommended
Action:

Capture the required diagnostics from the terminal such as Terminal logs.
Check the availability of the end processor if using a Gateway solution.
Check from the processor/gateway to ensure the transaction is not already successfully processed. This could indicate multiple charge to the same customer and hence must be addressed immediately if the SAF forward attempts are being processed successfully.

Event Format:

{
 "Data": "SAF Forward Exceeded",
 "ErrorCode": "43",
 "ResponseText": " Communication error: Can't Connect to the Host ",
 "transactionIdentifier":
 "123456|232|222360******0203|CREDIT|MASTERCARD|0009"
}

Field
Description:

Data - SAF Forward Exceeded.
ResponseText - Response from the Host causing the SAF to be retried.
ErrorCode - Error Code causing the retry of the SAF transaction.
Transaction Identifier - Invoice | Transaction Amount (Two decimals implied) | Masked PAN | Payment Type | Card Brand|SAF_NUM

Payment Type - CREDIT, DEBIT, EBT, GIFT, FSA, PRIV_LBL
Card Brand - VISA, MASTERCARD, DISCOVER, AMEX, UNIONPAY, JCB, DEBIT
SAF_NUM - Locally generated SAF number for this particular transaction based on which it is stored in the SAF Database.

8. Application Crash or Hang

Fields Description
Event Name: ApplicationException

Priority: Critical

Description: This Critical event is posted when there is an exception, such as an application crash or hang during processing. The Failure reason field will differentiate between a crash and a hang. This error would signify a non-recoverable condition which in most cases would require to be followed by an application restart. These exceptions should typically not occur since this will result in payment application being unusable.

Possible
Cause:

This event may occur for the following reasons:
Incorrect implementation at some stack on the terminal.
Memory corruptions
Deadlock conditions

Recommended
Action:

Capture the required diagnostics from the terminal such as Terminal logs and capture the screen on the terminal if it was an Application Hang.

Event Format:

{
 "AppName": "SCA",
 "data": "Suspecting a hang situation here as the application has been executing the QUERY command for over 15 minutes",
 "failureReason": "ApplicationHang"
}
{
 "data": "SCA App with main Thread[2661023744] is shutting down due to signal [6] on Thread[2661023744]",
 "failureReason": "ApplicationCrash",
 "signal": "6"
}

Fields Description

Field
Description:

AppName - Name of the application which is Hung/not functioning.
failureReason - ApplicationHang or ApplicationCrash
Data - For Application Hang, the Field Denotes which command that the terminal is attempting to process, but unable to proceed with completion. For Application Crash, the Field Denotes the type of Application Crash that has occurred and which process within the SCA that has caused the application to halt.
Signal - This field is valid for ApplicationCrash only and denotes the error/signal that occurred causing the Application to halt.

9. Payment Ready/ Not Ready State

Fields Description
Event Name: PaymentReady

Priority: Critical

Description:
This Critical event is posted when the application is ready to accept payments or is not in a state to process transactions. This event is especially useful during
deployments or replacements of terminal to know if the terminal has initialized successfully and is ready to accept transactions.

Possible
Cause:

This event may occur for the following reasons:
Failure to initialize one of the components due to missing configuration/packages.
Failure to obtain the Network.
Absence of Host Configuration on terminal.
Failure to make a connection to the host.

Recommended
Action:

Capture the required diagnostics from the terminal such as Terminal logs if Status indicates NotReady.
Ensure required configurations such as Merchant ID/Terminal ID is available on terminal.

Event Format:

{
 "Status": "Ready"
}
{
 "Status": "NotReady",
 "failureReason": "PosCommsInitializationInProgress"
}

Field
Description:

Status - The status field will indicate whether it is ready or not. Possible values are Ready/NotReady.
failureReason - This field contains the reason why the device is not ready.

10. Host Response Timeout

Fields Description
Event Name: HostResponseTimeout

Priority: High

Description: This High Priority event is posted when the application indicates it did not get a response back for the posted transaction. This should have resulted in a Timeout Reversal if the processor supports this or application recovery mechanism such as Auto Last Transaction to check the status of the previous transaction.

Fields Description

Possible
Cause:

This event may occur for the following reasons:
Application Does receive a response from the Gateway/Processor.
Gateway/Processor indicates that it did not receive a response from its endpoint.

Recommended
Action:

Check for any network instability during the time this occurred.
Validate if there were any end processor issues during this time.
Ensure transaction has been reversed.

Event Format:

{
 "Data": "Terminal got timed out from cert.api.vfipayna.com",
 "errorCode": "0",
 "failureReason": "ResponseTimeout",
 "transactionIdentifier": "111111|1.00|651000******0844|CREDIT|DISCOVER"
}

Field
Description:

Data - This field denotes the URL against which the Response Timeout occurred.
ErrorCode - Error Code causing the retry of the Timeout. It would contain TOR error code or no Data since there is no Response obtained from the Gateway/Processor during a timeout situation.
failureReason - ResponseTimeout
Transaction Identifier - Invoice | Transaction Amount (Two decimals implied) | Masked PAN | Payment Type | Card Brand|SAF_NUM

Payment Type - CREDIT, DEBIT, EBT, GIFT, FSA, PRIV_LBL
Card Brand - VISA, MASTERCARD, DISCOVER, AMEX, UNIONPAY, JCB, DEBIT
SAF_NUM - Locally generated SAF number for this particular transaction based on which it is stored in the SAF Database.

11. POS Disconnection

Fields Description
Event Name: POSDisconnection

Priority: High

Description: This High event is posted to notify a Disconnection from the POS. This can signify that the POS and Terminal may not be in sync with regards to the transaction status if this issue occurred while within a session. The event would provide details if the disconnection occurred within a session or during a Pairing process (For Bluetooth).

Possible
Cause:

This event may occur for the following reasons:
Network Failure between the POS and the terminal.
POS closing the connection prior to the application responding to a command.

Recommended
Action:

Check for Network instability between the Terminal and POS.
Capture required diagnostics such as terminal logs.
Identify if the POS has closed the connection and capture POS logs.
Ensure the transaction status is correctly updated on the POS.

Fields Description

Event Format:

{
 "InsideSession": "false",
 "Interface": "Bluetooth",
 "PosIdentifier": "C4:C3:6B:6D:13:36,MPOS1234",
 "Reason": "PairingDisconnect"
}
{
 "InsideSession": "true",
 "Interface": "TCP",
 "PosIdentifier": "10.80.10.52",
 "Reason": "AbruptDisconnect"
}

Field
Description:

InsideSession - Indicates if the application was within a session when the POS disconnection occurred. Possible values - true/false.
Interface - Indicates the interface over which the POS Disconnection has occurred. Possible values TCP, Bluetooth.
POS Identifier - Indicates the Bluetooth MAC Address and BlueTooth Name if the POS disconnection occurred on BlueTooth interface. For TCP interface, this field Indicates the IP address of the POS which has got disconnected.
Reason - Indicates the reason for the POS Disconnection.
Possible values include PairingDisconnect, AbruptDisconnect.

12. Last Transaction Queries

Fields Description
Event Name: LastTransactionQueries

Priority: High

Description:
This High event is posted when the terminal receives Last Transaction query from the POS.
The LAST Tran Command is typically sent to the terminal if there is some disconnect
between POS and terminal causing POS to be out of sync.

Possible Cause:

This event may occur for the following reasons:
Host Timeout occurred and terminal/POS do not have the final status of the
transaction prompting the POS to initiate LAST_TRAN.
Network glitch causing the Terminal response to get dropped and not ready the
POS. POS would initiate the LAST_TRAN to know the final status.

Recommended
Action:

Check for Network instability between the Terminal and POS.
Capture required diagnostics such as terminal logs.
Check if the final status of transaction was finally obtained.
Ensure there is no situation of customer being charged multiple times due to unknown
transaction status.

Event Format: No additional fields.

13. SAF Details

Fields Description

Event Name: SAFDetails

Priority: High

Description: This high priority event is posted by the application on every restart or reboot when there are SAF transactions in the database. It will include details of PROCESSED, DECLINED, ELIGIBLE, and NOT-PROCESSED, DEFFERRED SAF transactions.

Possible
Cause:

This is a generic event posted during the application startup which would help merchant understand the status of the Store and Forward transactions.

Recommended
Action:

The merchant can monitor this event to understand if the terminal has been in Offline mode and has been storing SAF transactions for long.
Terminal should typically not be offline for a long time and merchant should watch out for a large number of SAF transactions or high value of SAFDays.
Troubleshoot with the store to ensure network is properly setup and terminal has a valid IP address.
Monitor SAF processing using SAF Query and if transactions are not being processed, work with the Verifone and Processor contacts to ensure terminal is able to process successfully.

Event Format:

{
 "SAFDays": "0",
 "declinedAmount": "25840",
 "declinedCount": "317",
 "deferredAmount": "0",
 "deferredCount": "0",
 "notProcessedAmount": "0",
 "notProcessedCount": "0",
 "pendingAmount": "0",
 "pendingCount": "0",
 "preAuthAmount": "0",
 "preAuthCount": "0",
 "processedAmount": "380",
 "processedCount": "7",
 "totalAmount": "26220",
 "totalCount": "324"
}

Field
Description:

SAFDays - Number of Days since the Oldest Eligible SAF. All amount values mentioned below are with two digits of implied decimal. Example: 25840 indicates $258.40.
declinedAmount - Total Amount of Declined Transactions.
declinedCount - Total Number of Declined SAF Transactions.
deferredAmount - Total Amount of Deferred Transactions.
deferredCount - Total Number of Deferred transactions.
notProcessedAmount - Total Amount of transactions not processed.
notProcessedCount - Total number of transactions not processed.
pendingAmount - Total transaction Amount of currently eligible transactions.
pendingCount - Total number of transactions still in eligible state.
preAuthAmount - Total transaction amount of Pre-Authorization transactions.
preAuthCount - Total number of Pre-Auth transactions.
processedAmount - Total transaction amount of successfully processed transactions.
processedCount - Total number of transactions which are successfully processed.
totalAmount - Total transaction amount of all transactions in SAF.
totalCount - Total number of transactions in SAF.

14. Duplicate Transactions

Fields Description

Event Name: DuplicateTransactions

Priority: High

Description: This high priority event is posted by the application whenever it detects the duplicate transaction. This event could indicate that the customer was charged multiple times unless the transaction maps to different purchases by the same customer.

Possible
Cause:

Duplicate transaction was attempted since previous transaction result was not obtained by the POS.
Valid attempt of purchase by same customer for same transaction amount.

Recommended
Action:

Capture diagnostic data such as terminal logs and POS Logs.
Identify if there are large number of duplicate transactions and check the POS logs if it was a genuine attempt for another transaction or if the transactions were re-attempted because status of previous transaction was unknown.

Event Format:

{
 "dupTransactionIdentifier": "000932|9999900|374245*****1003|CREDIT|AMEX",
 "failureReason": "DuplicateTransaction",
 "transactionIdentifier": "000933|9999900|374245*****1003|CREDIT|AMEX"
}

Field
Description:

dupTransactionIdentifier - Transaction details of the previous transaction which has been identified as a duplicate of current transaction.
failureReason - Duplicate Transaction.
transactionIdentifier - Transaction details of current transaction which was not processed due to the identification of a previous duplicate transaction.

Transaction Identifiers - Invoice | Transaction Amount (Two decimals implied) | Masked PAN | Payment Type | Card Brand

15. Network Down

Fields Description
Event Name: NetworkDown

Priority: High

Description:

This high priority event is sent by application whenever it detects a network down event with any of the network interfaces,
such as WIFI, GPRS, Bluetooth, USB or Ethernet. This event would signify the health of the Network. Not having a reliable
network or stable network would result in a greater number of offline transactions or loss of business due to terminal being in
offline state.

Possible
Cause:

Faulty hardware such as network switch, cables etc.
Moving out of WIFI/GPRS ranges and hence resulting in network drop.
Network provider outage due to some technical/environmental issues.

Recommended
Action:

Identify the stores where the Network Down events occur the most and check for network stability concerns. attempt for
another transaction or if the transactions were re-attempted because status of previous transaction was unknown.

Event Format:

{
 "Data": "",
 "Interface": "Wifi",
 "failureReason": "Network Down"
}

Fields Description

Field
Description:

Interface - Indicates the Interface which received the Interface Down even from OS/ADK. This field can contain the
following values - WiFi, GPRS, Ethernet, Bluetooth, IP OVER USB.
FailureReason - Network Down

16. Poor Signal Strength

Fields Description
Event Name: PoorSignalStrength

Priority: High

Description:
The application will send this event whenever it detects that the signal strength of the WIFI or GPRS network is below the configured threshold limit.
Refer to Related Configurations section to obtain details on SIGNALTHRESHOLDLIMIT parameter.

Possible
Cause:

Terminal moving out of the recommended operating ranges.
Incorrect placement of the Wireless access points.

Recommended
Action:

Review the signal strength of WIFI / GPRS at different points in the store and plan to add required hardware to help boost signal strength.
Update the configurations of the wireless access points to use a wireless channel which has less traffic in the environment.

Event Format:

{
 "Data": "Poor Signal Strength DBM:-71|sRSSI:3|Signal Percent:20",
 "Interface": "Wifi"
}

Field
Description:

Data - Pipe “|” separated values mentioned below
Signal strength in DBM | Signal in RSSI | Signal in %
Interface - WiFi or GPRS

17. Low Battery

Fields Description
Event Name: LowBattery

Priority: High

Description:
The application will send this event for battery-operated devices like E285, E280, V400
whenever the battery level falls below the threshold. The default threshold in the ADK level is
25%.

Possible Cause:
Terminal not charged correctly.
Degraded Battery health.

Fields Description

Recommended
Action:

Review the LowBattery events from various terminals and identify the battery life.
Investigate battery health if the LowBattery occurs often.
Review the process followed by merchants to ensure terminal is placed on charging
points at required intervals.

Event Format:
{
 "Data": "Battery Level is 13 %"
}

Field
Description:

Data - Denotes the battery level in %

18. Host Declined Transactions

Fields Description
Event Name: HostDeclinedTransactions

Priority: Medium

Description: The application will send this event for every declined transaction from the Gateway/Processor. The event will include details such as the Host response code, Transaction Identifier, Transaction type and the response text received from the host.

Possible
Cause:

Valid declines from the issuer due to insufficient funds, incorrect PINs etc.
Gateway/Processor setup or processing issues.
Issues in the message format posted by the terminal.

Recommended
Action:

Review the declined transactions and work with the Gateway/Processor to identify the reason for transactions which are not expected to be declined.

Event Format:

{
 "ErrorCode": "6",
 "ResponseText": "TRANS DENIED",
 "failureReason": "TransactionDeclined",
 "transactionIdentifier": "71234|001|476173******0023|DEBIT|VISA",
 "transactionType": "SALE"
}

Field
Description:

ResponseText - Response from the gateway/processor during a decline.
ErrorCode - Error Code from gateway/processor for transaction decline.
Transaction Identifier - Invoice | Transaction Amount (Two decimals implied) | Masked PAN | Payment Type | Card Brand

Payment Type - CREDIT, DEBIT, EBT, GIFT, FSA, PRIV_LBL
Card Brand - VISA, MASTERCARD, DISCOVER, AMEX, UNIONPAY, JCB, DEBIT

Transactiontype - Type of transaction such as SALE, REFUND etc.

19. Transaction Performance Time

Fields Description

Event Name: TransactionPerformanceTime

Priority: Medium

Description: In this event, the application records the minimum, maximum, and average time taken for SALE transaction for each card entry mode (EMV CT, EMV CTLS, MSR, KEYED/MANUAL, ACCOUNT PASSTHROUGH). The event also records the minimum, maximum and average time taken for START and FINISH SESSION commands.

Possible
Cause:

This is a generic event posted during the application startup which would help merchant understand the performance for sale transactions at various stores.

Recommended
Action:

Monitor terminals/stores with lower average transaction performance and pull the required diagnostic logs from the terminal/POS to identify the possible reasons.
Work on merchant training if the lower performance times are due to process being followed at the store while running the transaction.

Event Format:

{
 "cardTokenTransactions": {
 "avgTime": "2.118",
 "maxTime": "2.118",
 "minTime": "2.118",
 "noOfTransactions": "1",
 "transactionType": "SALE"
 },
 "emvCTLSTransactions": {
 "avgTime": "12.9843",
 "maxTime": "15.567",
 "minTime": "10.375",
 "noOfTransactions": "3",
 "transactionType": "SALE"
 },
 "emvCTTransactions": {
 "avgTime": "17.0627",
 "maxTime": "30.824",
 "minTime": "7.567",
 "noOfTransactions": "10",
 "transactionType": "SALE"
 },
 "manualTransactions": {
 "avgTime": "25.011",
 "maxTime": "27.180",
 "minTime": "22.842",
 "noOfTransactions": "2",
 "transactionType": "SALE"
 },
 "msrTransactions": {
 "avgTime": "21.95",
 "maxTime": "30.101",
 "minTime": "6.851",
 "noOfTransactions": "4",
 "transactionType": "SALE"
 },
 "passThroughTransactions": {
 "avgTime": "9.813",
 "maxTime": "9.813",
 "minTime": "9.813",
 "noOfTransactions": "1",
 "transactionType": "SALE"
 }
}

Field
Description:

Multiple containers in the content field for this event type will denote the transaction performance across different entry modes. Each container includes following details -
avgTime - Average time of all transactions in this category.
maxTime - Maximum Transaction time.
minTime - Minimum transaction time.
noOfTransactions - Number of transactions across which the average was obtained, or max/minimum was found.

The various containers are based on the different card entry modes - cardTokenTransactions, emvCTLSTransactions, emvCTTransactions, manualTransactions, msrTransactions, passThroughTransactions.

20. Fallback Transactions

Fields Description
Event Name: FallbackTransactions

Priority: Medium

Description:

The application will send this event whenever it detects the following scenarios:
It could not read the EMV CT card after the maximum attempts.
It could not read the EMV CTLS card after the maximum attempts.
It could not read the MSR card after the maximum attempts.
The EMV card does not have a matching AID on the terminal.

The failurereason field will indicate the reason for the fallback.

Possible
Cause:

Faulty chip
Customer removes the CTLS card away from the terminal before the card read can complete.
Invalid/incorrect configuration on the terminal.
Damaged magstripe.

Recommended
Action:

Identify failing transactions and possible reasons of failure.
Pull the required diagnostic OS Logs from the terminal.
Train the merchants to handle the fallback effectively.
Ensure terminal configuration is set correctly.

Event Format:

{
 "failureReason": "MaxSwipeError",
 "transactionIdentifier": "000191|370000|||"
}

Field
Description:

failureReason - MaxSwipeError or EmptyCandidateList or MaxInsertError or MaxTapError
transactionIdentifier - Transaction details of current transaction.

Transaction Identifiers - Invoice | Transaction Amount (Two decimals implied) | | | Card details would not be present
in this case since the card was not read successfully when the fallback occurred.

21. Card Not Supported

Fields Description
Event Name: CardNotSupported

Priority: Medium

Description:

The application will send this event whenever there is a local decline of the transaction due to any of the following reasons:
The card is not part of the BIN table (BIN table lookup failure).
The card is not valid (expired card, LUHN check failure).
The payment type field from the POS does not match the card being used.

The data field will contain the detailed reason for the decline.

Possible
Cause:

Incorrect card being used by the cardholder compared the card expected by the POS.
Card configuration is not setup correctly on the terminal, such as missing card BIN configuration.
Usage of NON-ISO card for a transaction expecting ISO card to be used.

Recommended
Action:

Identify failing transactions and possible reasons for failure.
Capture required diagnostics such as terminal logs.
Train the merchants to properly choose the payment type for transactions through the POS.
Ensure the terminal configuration is up to date.

Event Format:

{
 "Data": "Expected:DEBIT Actual:CREDIT",
 "failureReason": "PaymentTypeMismatch",
 "transactionIdentifier": "000234|1000|476173******0011|CREDIT|VISA"
}

Field
Description:

Data - Additional details causing the failure such as Non-ISO Card, Bin Look Up Failed, actual payment type versus expected payment type etc.
failureReason - PaymentTypeMismatch , UnsupportedCard,
Transaction Identifier - Invoice | Transaction Amount (Two decimals implied) | Masked PAN | Payment Type | Card Brand

Payment Type - CREDIT, DEBIT, EBT, GIFT, FSA, PRIV_LBL
Card Brand - VISA, MASTERCARD, DISCOVER, AMEX, UNIONPAY, JCB, DEBIT

