
3D Secure

Overview
The term 3D means 3-domain: issuer domain, acquirer domain, and interoperability domain (the schemes). The protocol was initially
developed by Visa Inc. and adapted later by other card schemes.

Each card issuer has a different name for 3D Secure (3DS), although the flows are the same. The only differences are the exact data
exchanged, and the algorithms used to guarantee the authenticity and integrity of the 3DS operation.

Visa’s 3DS product was initially called Verified by Visa (now Visa Secure), Mastercard's is called Identity Check with enhanced functionalities,
American Express has SafeKey, Discover/Diners calls 3DS ProtectBuy, etc.

Why 3D Secure?
The purpose of 3D Secure is to add an extra security level to all online payments by applying an additional authentication step for the
cardholder before sending an authorization request to the card issuer (Visa, Mastercard, JCB, Amex, etc.). Before 3DS was introduced, the
only authentication for online payments was on the CVV2/CVC2/CID, which stands for Card Verification Value 2, Card Validation Code 2, or
Card Identification Number.

With the evolution of card-present payments, especially with the introduction of EMV, fraud attempts in the payment industry have been
shifted to the more vulnerable channel: online card-not-present (CNP) payments. As you can imagine, hacking or brute-force-attacking a
CVV2 is not the most difficult thing. Therefore, schemes had to make the effort to secure the online channel as well. This is the key driver for
the introduction of 3D Secure 1.0.

Benefits
For Card Schemes: offering 3DS to cardholders reduces the dispute handling efforts of both the cardholders and the scheme and
increases the acceptance through better merchant confidence.
For Acquirers and Merchants: 3DS helps reducing the chargeback rates, hence providing better protection to merchants. At the
same time, it also helps increase sales due to the improved confidence of the cardholders.
For Issuers: 3DS adds value to existing product offerings and gives cardholders confidence when shopping online.
For Cardholders: 3DS improves confidence when shopping online.

Glossary
Before diving into the 3D Secure flows, a few roles and terminologies need to be explained.

As mentioned earlier, 3D means the three domains that are involved in securing online payments: issuer domain, acquirer domain, and
interoperability domain.

Issuer Domain: responsible for managing the enrolment of their cards for 3DS service and authenticating the cardholders during the
3DS authentication.
Acquirer Domain: responsible for onboarding the merchants and requesting 3DS authentication during online payments. By
requesting 3DS operation, the liability of the acquirer is shifted to the issuer for online CNP transactions.
Interoperability Domain: responsible for facilitating the exchange of requests/responses between the issuer and the acquirer
domains.

Each domain, therefore, would need a technical component to facilitate the 3DS flow:

MPI (Merchant Plug-in): the acquirer domain component, which creates and processes payment authentication messages. This
functionality may be performed by the acquirer or a third party.

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

1

https://verifone.cloud/docs/online-payments/3dsecure

DS (Directory Server): the interoperability domain component, which is responsible to facilitate the message exchanges between
MPI and ACS, as well as determining whether card/acquirer/merchant is participating in the 3DS services.
ACS (Access Control Server): the issuer domain component, which mainly performs two tasks:

Verify if the given card number is enrolled for 3DS service.
Authenticate the cardholder for a specific transaction. This service can be either hosted by the issuer or third-party providers.

How does 3D Secure work?
A typical process flow of a card payment transaction with 3DS authentication is shown below.

Simply put, a complete 3DS operation consists of two steps:

1. Merchant “ASKS” the issuer: "Can this card do 3DS?” If the issuer’s answer is NO, the flow ends.
2. If the answer to question one is YES, then the merchant redirects the cardholder to the issuer’s authentication site to complete the

authentication.

In short, 3DS is a separate flow, which happens before an authorization request is sent. The flow is handled by a web-based system that
consists of MPI, DS and ACS. The communication between these systems is completely decoupled from the traditional card payment
processing rail. Why?

It is difficult to embed such flow into the card payment rail, which is built on top of ISO 8583 that does not have such a concept

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

2

https://verifone.cloud/docs/online-payments/3dsecure

It is easy for acquirers, issuers, schemes to implement the support without interrupting the normal card payments processing
It is based on more advanced technology, which is easier to integrate (compared to the ISO), and does not require special hardware

Step-by-step 3D Secure Flow

The detailed processing flow is explained as below:

Step 0: The cardholder requested to pay for a purchase online.
Step 1: The merchant decides to use 3DS to authenticate the cardholder before sending an authorization. So, the merchant sends a
Verification request (VEReq) to the MPI, which then routes the request to scheme DS. At a minimum, the following data are included
in a VEReq: card PAN, expiry dates, transaction amount, currency, transactions date.
Step 2: Scheme DS, when receiving the VEReq from MPI, checks if the combination of the merchant, acquirer and card number that
is making the request has been enabled at scheme side. If not, such request will be directly rejected. Otherwise, DS will route the
VEReq to ACS.
Step 3: When receiving the VEReq, the issuer ACS will check the internal registration record to determine if the card has been
enrolled for 3DS service.
Step 4: The issuer responds to the VEReq with a VERes message. Depending on if the card has been enrolled at the issuer, the
following responses can happen in the VERes:

Status = Y (card enrolled), hence a redirect URL is included for cardholder authentication later
Status = N (card not enrolled), hence a redirect URL is not included
Status = U (unable to verify). This can happen when the issuer’s ACS server is down. In this case, a redirect URL is not
included.

Why this step? Because the merchant needs to first query the issuer to see if the card can be used for 3DS authentication.

Step 5 - 6: Issuer’s response, VERes, is returned to the merchant. Hence, the merchant can decide based on the enrollment status of the
card and its own risk policy, e.g., continue with the authentication (in case of Y), continue with authorization without 3DS (in case of N and U),
or decline (in case of N and U).

Step 7: In case the enrollment status of the card is Y, and a redirect URL is returned in the VERes message, MPI sends a Payment
authentication request (PAReq) message to the ACS via the cardholder's browser. At the same time, the cardholder is redirected to the
issuer’s redirect URL for authentication.

At a minimum, the following data need to be sent in the PAReq: merchant ID, merchant name, merchant country, merchant URL,
transaction date & time, transaction amount, currency, card PAN, order description, a unique transaction identifier determined by the
merchant/MPI (also called XID).

Step 8: The cardholder interacts with the issuer’s authentication server to authenticate himself. The exact mechanism and authentication
method is proprietary to the issuer (e.g., via a static password that was configured at the moment of the enrollment to the service, or a
dynamic authentication method that is shared with issuer’s online banking, etc.). Once the cardholder successfully authenticated himself, the
issuer’s ACS responds with a Payment Authentication Response (PARes) message, indicating the results of the cardholder authentication.

PARes is a base64 encoded form of a few data. At a minimum, the following data are included in a PARes: 1. Data from the PAReq
message: Merchant ID, merchant name, transaction date & time, transaction amount, currency, card PAN, card expiry, XID; 2. Data
from the ACS: authentication result codes, hash of the order description, ECI (Electronic Commerce Indicator) and most importantly a
“cryptogram” of the authentication action (in Visa terminology, it is called CAVV, Cardholder Authentication Validation Value. In
Mastercard terminology, it is called AAV, Accountholder Authentication Value).

Note: CAVV/AAV is a cryptogram generated using card PAN, expiry date, a unique number per transaction, and the
authentication result code. Why these values? At a minimum, CAVV/AAV should serve the purpose to guarantee the integrity
of the card used for the payments, the result of the 3DS authentication, and to make sure that a replay attack is not possible

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

3

https://verifone.cloud/docs/online-payments/3dsecure

(hence the unique number, e.g., XID).
Depending on the outcome of the 3DS authentication, the following authentication result codes may be returned:

Y: Authentication is successful
N: Authentication fails
A: Authentication attempted (see the next sections for details)
U: Unable to authenticate (e.g., Issuer’s ACS is down)

The ECI value will be set corresponding to the 3DS authentication result.

Note: PARes will always be returned irrespective of the authentication result, so does the CAVV/AAV.

Step 9: The merchant receives back PARes. Based on the result of the authentication (Y, N, A or U), merchant makes decision on whether to
decline the transaction (e.g., in case the result is N), proceed the transaction with 3DS (e.g., in case the result is Y or A) or proceed the
transaction without 3DS (e.g., in case the result is U). This depends completely on the risk policy of each individual merchant.

Step 10 - 12: The merchant decides to proceed with authorization with 3DS (either fully authenticated or attempted), an authorization
message is sent with the PARes data (most of the time, only ECI, CAVV and XID) to the acquirer, which routes the transaction to issuer via the
relevant scheme.

Step 13: The issuer, when receiving an authorization request that includes 3DS data, validates the data with its ACS server. (e.g., validates if
the CAVV/AVV is valid, and if yes, validates if the requested transaction amount, currency, etc. matches with the data when 3DS was
requested.)

Step 14 - 16: The issuer responds to the acquirer (hence the merchant) the decision on the transaction authorization (either approve or
decline), including the result of the 3DS data validation (Note: a failed 3DS validation does not necessarily lead to a decline of authorization,
but does lead to an indication that the transaction has been DOWNGRADED to non-3DS)

Attempted authentication
When do we get an attempted authentication? Stand-in or attempted service? The attempted service will be hosted either by the card issuer
or the scheme. Now, the scheme-hosted solution is most used.

To encourage the merchant to do 3DS even if a card is not enrolled for the service or if issuer ACS is temporarily unavailable, a stand-in
mechanism is introduced. To put it simple: this is a service to provide a “proof” that the merchant did make the effort to try 3DS, even though
the card was not enrolled, or the issuer ACS was unable to reach. However, the fact that the merchant made the try will be “incentified” by
shifting their liability.

As mentioned, there will be two scenarios when the attempted service will be called.

Scenario 1: Card is not enrolled for 3DS. If this is the case, and the card issuer has enabled attempted service, the VEReq message (to check
if the card is enrolled) will get a YES response from the attempted service and a redirect URL from the attempted service (rather than the
ACS). When the merchant tries to redirect the cardholder to this URL, it immediately gets redirected back to the merchant again, with a
PARes which stated the authentication status as A (attempted).

Scenario 2: Card is enrolled for 3DS; however, the issuer’s ACS is unavailable. Hence, the attempted (or stand-in) service is triggered, which
again returns a YES response to the VEReq, together with a redirect URL. When merchant tries to redirect the cardholder to this URL, it
immediately gets redirected back to the merchant again, with a PARes which stated the authentication status as A (attempted).

Note: Currently, more and more issuers are subscribed to scheme’s stand-in service. Hence, you would notice that more than 80% of the 3DS
VEReq messages got a response of Y. It does not mean that more than 80% of the cards have enrolled for 3DS. It only indicates that more
and more issuers are participating in stand-in services. As a result of it, you would also notice that a lot of 3DS authentications have an A

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

4

https://verifone.cloud/docs/online-payments/3dsecure

(Attempted) status. Stand-in is the reason.

Introduction to EMV 3D Secure

EMV® 3D Secure (2.0)

3D Secure 1.0 has faced challenges both on technical and the user experience level. On one hand, the initial protocol added an extra step in
the checkout journey (redirection page), which led to reduced conversion rates. As a result, adoption by merchants was very low, as they
were seeing more and more customers to abandon during the authentication flow. On the other hand, 3DS 1.0 faced similar challenges when
the smartphone era begun. 3DS 1.0 was not designed with the capability of supporting native mobile applications. Merchants who operate
their own mobile applications must break the customer journey and use a webview version of the 3DS redirection to the Issuer's website.

Due to the above reasons, the 3DS protocol had to be reviewed and updated as technology and e-commerce market evolve. With the
contribution of EMVCo® and their technical associates, EMV® 3D Secure became reality. The latest protocol specification was a collaborative
effort of all the global payment networks apparting EMVCo® and is expected to be supported by local schemes as well. With the introduction
of EMV® 3D Secure (known as 3DS 2.0), authentication in card-not-present transactions offer better user experience, more capabilities in a
more secure manner. The new 3D Secure authentication protocol supports Payment and Non-Payment use cases in App-based, Browser-
based and Initiated by the Requestor transactions. In addition, new data elements were added to ensure that a larger piece of information will
flow to the Issuers.

The usage of 3D Secure can provide benefits in terms of increased security and the shift of chargeback liability to issuers.

3D Secure is available for card payments, Google Pay, Apple Pay, Vipps and Mobile Pay.

It is not available for Advanced Payment Methods (APM), only for card transactions.

EMV® 3D Secure enhancements
The introduction of the EMV® 3D Secure brought many changes on the way that Cardholder is authenticated. EMV® 3D Secure supports
different device channels, new flows, new messages and message categories, and additional data element to be included in the messages.

Device channels

EMV® 3D Secure supports three device channels: App-based (APP), Browser-based (BRW) and 3DS Requestor Initiated (3RI).

The App-based flow will support authentication flows, which take place through a merchant’s application (APK). To support the APP flow, an
integration to the 3DS SDK is needed.

The Browser flow in EMV® 3D Secure is an enhanced flow compared to its predecessor. During a Browser flow, the 3DS Method is used to
allow the ACS to obtain additional browser information before the authentication is started.

The 3DS Requestor Initiated is used to confirm account information when the cardholder is not directly involved (e.g., confirm that an
account is still valid in a subscription).

New flows

During the authentication in 3D Secure 1.0.2, the Cardholder was challenged (step-up authentication) by the issuer. EMV® 3D Secure allows
a frictionless authentication (no step-up) based on a risk analysis that the issuer performs. A typical frictionless (left) and challenge (right)
flow are presented below.

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

5

http://3d-secure.dimebox.com/docs#tag/3DS-JS
https://verifone.cloud/docs/online-payments/3dsecure

The frictionless flow begins with the initiation of the 3D Secure transaction (step 1) and is completed with communicating the result of the
risk analysis to the Browser/SDK. The challenge flow begins with step 1 (lookup request) and continues beyond step 4 to challenge the
cardholder (steps 5, 6 and 9) and communicate the result of the authentication back to the 3DS Server (step 7 and 8).

In detail:

Step 1: The cardholder initiates a 3D Secure transaction, and the relevant information is sent to the 3DS Server.

Step 2: The 3DS Server sends the Authentication Request (AReq) to the payment network (DS) and finally reaches the Issuer (ACS).

Step 3: The Issuer at this point decides whether to continue with frictionless or challenge flow and returns the result within the
Authentication Response (ARes).

Step 4: The 3DS Server informs the Browser or the SDK regarding the Issuer's decision. If the Issuer has decided to frictionlessly authenticate
the cardholder, then the transaction has been completed. However, if the Issuer decided to challenge the cardholder, then the transaction
continues with the next step.

Step 5: The Browser/SDK sends the Challenge Request (CReq), which initiates Cardholder interaction with the issuer and can be used to
carry authentication data from the Cardholder.

Step 6: The Challenge Response (CRes) is the issuer’s (ACS) response to the CReq message. It can indicate the result of the Cardholder
authentication or, in the case of an App-based model, also signal that further Cardholder interaction is needed.

Step 7: Once the challenge has successfully completed, the issuer sends the Result Request (RReq) to communicate the results of the
authentication.

Step 8: The Result Response (RRes) is sent by the 3DS Server and acknowledges receipt of the RReq message.

Step 9: After receiving confirmation that the RReq is received, the ACS sends the Final Challenge Response to inform that the authentication
has been completed.

In addition to Frictionless and Challenge flows, Out-of-Band (OOB) flow has been introduced. Out-of-Band flow is the same flow to the
standard Challenge flow with the only difference that between Step 5 and Step 6 the challenge (step up) takes place outside the 3D Secure
protocol. During the OOB authentication, the Cardholder authenticates to the Issuer while interacting with the ACS outside the scope of the
EMV® 3D Secure specification. For example, an OOB authentication could take place using a push notification to a banking app that
completes authentication and then sends the results to the ACS.

New messages and data elements

Besides new device channels, the new version of 3DS introduces new messages and data elements. The table presents the new messages
compared its predecessor.

Flow 3D Secure 1.0 EMV® 3D Secure 2.0

Preparation Preparation Request/Response (PReq/PRes)

Authentication Verification Request/Response
(VEReq/VERes)

Authentication Request/Response
(AReq/ARes)

Challenge Payer Authentication Request/Response
(PAReq/PARes)

Challenge Request/Response (CReq/CRes)

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

6

https://verifone.cloud/api-catalog/3d-secure-api#operation/getV23dId
https://verifone.cloud/docs/online-payments/3dsecure

Flow 3D Secure 1.0 EMV® 3D Secure 2.0

Results Results Request/Response (RReq/RRes)

The new messages also carry new, additional data elements. The messages have been enriched to carry much more information regarding
the transaction and the Cardholder to the Issuer. The new data elements refer to Cardholder information, device/browser Information, 3DS
Requestor Information and they facilitate the Issuer on the authentication decision. Not all the data elements are required to initiate a 3DS
transaction, however, the more information the Issuer has for the Cardholder and the merchant, the higher possibilities for a frictionless flow
are.

Available integrations
The new solution of 3D Secure is available for these integrations:

API Integration
Checkout
Pay by Link

Automatic fallback to 3DS 1.0 if the issuer does not support EMV® 3DS 2.0

When using Verifone's 3DS solution, the 3DS Server will always try to route the transaction through EMV® 3D Secure (2.0) rails. If the issuer
does not support or the card is not enrolled for the latest version of 3D Secure, an automatic fallback to 3DS 1.0 takes place. In such a way, if
the enrollment response is not positive, there is no need to initiate a new 3D Secure 1.0 transaction.

Demo

Interested to get a first taste of how the checkout will look like?

Please follow the below steps for Direct Integration.

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

7

https://verifone.cloud/docs/online-payments/3dsecure#browser-flow-using-the-3ds-javascript-and-api
https://verifone.cloud/node/47
https://verifone.cloud/docs/online-payments/pay-by-link
https://verifone.cloud/docs/online-payments/3dsecure

Browser flow using the 3DS JavaScript and API
For directly using our API to perform 3DS transactions, you need to integrate on your website a JavaScript that handles the step-up interaction
with Cardholder and gathers the browser information. The figure below presents the complete flow when a browser is used by the cardholder
to purchase a good. The payment flow consists of four parts: the setup, the actions before the customer initiates the purchase (clicks buy
button), the Authentication, and the Authorisation.

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

8

https://verifone.cloud/docs/online-payments/3dsecure

Set up

During the set-up part, the merchants will receive their credentials and assistance how to set an authenticator and 3DS account details.

Checkout

The checkout section takes place when the cardholder fills in the payment details. The following steps shall be completed prior to the
cardholder initiating the transaction (clicks ‘Buy/Order’).

Create a JWT in the backend server as described here.

Include the JavaScript on the website as described here.

a. Configure it (optional)
b. Listen for events
c. Initialize the Songbird
d. Use the BIN detection to successful complete the 3DS Method
e. When 'payments.setupComplete' event is returned the set up step has been completed

3DS flow

The Authentication flow begins when the Cardholder initiates the transaction (clicks ‘Buy/Order’).

The Cardholder has initiated the transaction send the lookup request using the lookup API and in response receive the lookup
response
In the lookup response, the Issuer has defined whether the Cardholder is required to continue with the challenge flow (step up). If the
Issuer requests a challenge to happen, send the Cardinal. Continue as described in section 1.5.
When "payments.validated” is event returned (see payments.validated), send the JWT to the backend and validate it (see JWT
Validation)
Use the payment details to authorise the payment.

Processing the lookup response

After the ‘Lookup Response’ is returned, the merchant shall analyze the result of ‘enrolled’ and ‘pares_status’ to verify that the transaction is
eligible for Authentication. A transaction is eligible to continue the Authentication when the data element ‘enrolled’ contains a ’Y’ value.

If the data element ‘enrolled’ contains a ’Y’ value and the ‘pares_status’ contains the value ‘Y’ then the authentication was
successfully completed in a frictionless way (frictionless flow).
If the data element ‘enrolled’ contains a ’Y’ value and the ‘pares_status’ contains ‘C’, then get the acs_url (AcsURL), payload
(Payload), and transaction_id (TransactionId) and include them in the Cardinal.continue function in order to proceed with the
authentication session. The Cardinal.continue will display a modal window and automatically post the consumer's session over to the
acs url for authentication (section 1.5 Cardinal.Continue).
If the data element ‘enrolled’ contains a ’Y’ value and the ‘pares_status’ contains the value ‘R’, then the issuer is rejecting
authentication/verification and request that authorisation should not be attempted.

3DS JS

1.0 Setting up the 3DS JavaScript

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

9

https://verifone.cloud/docs/uk-gateway/threeds_jwt#create-jwt-to-initialize-the-javascript
https://verifone.cloud/docs/uk-gateway/threeds_js
https://verifone.cloud/api-catalog/3d-secure-api#operation/getV23dId
https://verifone.cloud/docs/uk-gateway/threeds_js
https://verifone.cloud/docs/uk-gateway/threeds_js
https://verifone.cloud/docs/uk-gateway/threeds_js
https://verifone.cloud/docs/uk-gateway/threeds_js#cardinalcontinue
https://verifone.cloud/docs/online-payments/3dsecure

The JavaScript used in the browser flow performs most of the heavy lifting on behalf of the merchants. The JavaScript collects all the device
data of the user’s browser, communicates directly with the 3DS Server, and handles the user experience of the cardholder during the
challenge.

Merchant’s back-end Merchant’s front-end Payment Brand

1. Create Request JWT

 2. Payments.setupComplete

 3. Start payment 4. Interaction with the Payment Brand

 5. Payments.validated

6. Validate Response JWT

1.1 Add the JavaScript on website

The JavaScript can be added to your site as any other client-side script, through a script tag. It is suggested to add the script after all your
content, before closing the HTML body tag.

Include the script:

Based on the environment, please include one of the following scripts in your site:

Environment 3DS JS URL

Sandbox https://songbirdstag.cardinalcommerce.com/cardinalcruise/v1/songbird.js

Production https://you.will.receive.this.url.during.onboarding.js

1.2 Configure the JavaScript

Cardinal.configure is an optional function that allows to pass configuration object into the JavaScript. Not using this function to your
integration will result to use the default configuration options. It is advised to call this function only once per page load and should be called
before Cardinal.setup.

Root Level Configuration

Field Type Default Description

timeout int 8000 The time in milliseconds to wait
before a request to Centinel API
is considered a timeout

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

10

https://songbirdstag.cardinalcommerce.com/cardinalcruise/v1/songbird.js
https://you.will.receive.this.url.during.onboarding.js/
https://verifone.cloud/docs/online-payments/3dsecure

Field Type Default Description

maxRequestRetries int 1 How many times a request
should be retried before giving
up as a failure

logging object

button object

payment object

Logging

Field Type Default Description

level string off The level of logging to the
browser console. Enable this
feature to help debug and
implement Songbird.

Possible Values:

off - No logging to console
enabled. This is the setting to
use for production systems.

on - Similar to info level logging,
this value will provide some
information about what is
occurring during a transaction.
This setting is recommended for
merchants implementing
Songbird.

verbose - All logs are output to
console. This method can be
thought of as debug level
logging and will be very loud
when implementing Songbird,
but is the level needed when
getting support from the
Cardinal team.

Button

Field Type Default Description

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

11

https://verifone.cloud/docs/online-payments/3dsecure

containerId string Cardinal-Payments The HTML ID value of the
container to inject all payment
buttons into

Payment

Field Type Default Description

view string modal What type of UI experience to
use when Songbird injects
payment brand UI elements into
the page.

Possible Values:

modal - Render as a modal
window. This view type renders
the payment brand over your
page, making it feel separate
from your page.

inline - Render inline to the
page. This view type embeds
the payment brand into the
page making it feel like its a
part of your website.

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

12

https://verifone.cloud/docs/online-payments/3dsecure

Field Type Default Description

framework string cardinal What kind of view framework
should be used to render the
payment brand. If your site is
using a supported framework
and you have custom styles
applied to it, we will use that
framework to keep the
consistent look and feel of your
site. When using any other
frameworks than 'cardinal', your
site is responsible for including
the framework assets including
CSS, JavaScript, and any other
additional files needed.

Possible Values:

cardinal - Use the custom
Cardinal view framework built
and maintained by
CardinalCommerce. Songbird
will handle all UI rendering and
styles, no additional work is
needed.

bootstrap3 - Use bootstrap 3
modal to render the UI elements
.

displayLoading boolean false A flag to enable / disable a
loading screen while requests
are being made to 3DS Server
API services. This can provide
feedback to the end user that
processing is taking place and
they should not try to reload the
page or navigate away.

For example, to control the logging volume from the library, use the Cardinal.configure function, as seen below:

Cardinal.configure example:

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

13

https://verifone.cloud/docs/online-payments/3dsecure

Cardinal.configure({
logging: {
level: "on"
}
});

Example of using all configuration option possible:

{
timeout: 8000,
maxRequestRetries: 2,
button:{
containerId: 'Cardinal-Payments'
},
logging:{
level: 'on'
},
payment:{
view: 'modal',
framework: 'bootstrap3',
displayLoading: false
}
}

1.3 Listen for events

This function sets up an event subscription with the JavaScript to trigger a callback function when the event is triggered by the JavaScript. A
valid event subscription requires a namespace and a callback function to be run when the event is triggered. Calling this function with the
same namespace multiple times will result in callback being triggered multiple times.

The syntax of the function is:

Cardinal.on(EVENT_NAME_SPACE, CALLBACK_FUNCTION);

The following sections discuss the events that a merchant can listen to.

1.3.1 payments.setupComplete

payments.setupComplete() is an optional event which should be called after the Cardinal.setup() function.

To listen the payments.setupComplete event:

Cardinal.on('payments.setupComplete', function(setupCompleteData){
// Do something
});

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

14

https://verifone.cloud/docs/online-payments/3dsecure

If an error has happened during the Cardinal.setup() function, then the payments.setupComplete() will not be triggered. If your callback gets
executed, you know that the JavaScript is available to run transactions. This function will receive two arguments that describe the loaded
state of the JavaScript and the current session identifier.

The following object is returned to the merchant on the payments.setupComplete event as the first argument.

Key Type Description

sessionId String Merchant Consumer Session ID - This is the
consumer's session ID assigned to this user
by 3DS Server API

modules Array of Module State Objects An array of modules that were attempted to
be loaded and their status. You can
determine which payment brands were
loaded successfully and which may have
been configured on the merchant account
but failed to load properly. For 3DS, ‘cca’
will be returned.

Module State

Key Type Description

loaded String Merchant Consumer Session ID - This is the
consumer's session ID assigned to this user
by 3DS Server API.

modules Array of Module State Objects An array of modules that were attempted to
be loaded and their status. You can
determine which payment brands were
loaded successfully and which may have
been configured on the merchant account
but failed to load properly. For 3DS, ‘cca’
will be returned.

Example of payments.setupComplete data object:

{
"sessionId": "0_4f85c155-6604-4056-8957-7090412af179",
"modules": [{
"module": "CCA",
"loaded": true
}]
}

1.3.2 payments.validated

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

15

https://verifone.cloud/docs/online-payments/3dsecure

payments.validated event is triggered when the transaction has been finished and the control is given back to the merchant page. It includes
data on how the transaction attempt ended, that should be used in the logic for reviewing the results and decision making, how to proceed
with the transaction.

If the payments.validated is successful ("ActionCode": "SUCCESS"), then the data needed to proceed with the payment
Authorisation (CAVV, ECIFlag, XID, Enrolled, PAResStatus, SignatureVerification) will be included in the "Payment" object.

To listen the payments.validated event:

Cardinal.on('payments.validated', function(decodedResponseData, responseJWT){
// Do something
});

The payments.validated event consists of the Response Data and the Response JWT.

Field Type Required Desc

Response Data JSON object R The decoded Payload claim from
the response JWT. This is a
convenience value that is
passed back to the merchant for
client-side logic decision
making. This object should not
be used to send data to third
parties, as its validity cannot be
confirmed.

Response JWT String O Response JWT from 3DS Server
API service. This is where the
data field came from, except in
edge cases where a JWT was not
returned due to an error. The
merchant should use the data
within this value when sending
any data to third parties, since
the validity of this data can be
confirmed server side by
verifying the JWT signature.

The payments.validated can result into three different cases:

Type Response Data Response JWT Description

Normal Processing Present Present No issues encountered

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

16

https://verifone.cloud/docs/online-payments/3dsecure

Type Response Data Response JWT Description

Api Error Present Present An error occurred, but 3DS
Server API was able to generate
a response JWT. You can
validate these error responses
by validating the JWT as you
would in a successful
transaction

Service Error Present Absent An error was encountered, but a
response JWT was not
generated. This could be many
things including:

· Request to 3DS Server API
timed out

· Request JWT failed
authentication at 3DS Server API

· 3DS Server API is unavailable
to receive transactions

· JavaScript encountered an
unrecoverable error

Response Data

At minimum, the response data will include a base object as seen below. However, depending on what occurred in the response, additional
fields may be present.

Type Description

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

17

https://verifone.cloud/docs/online-payments/3dsecure

ActionCode The resulting state of the transaction.

Possible values:

SUCCESS - The transaction resulted in success for the payment
type used. This would indicate the user has successfully completed
authentication.

NOACTION - The transaction was successful but requires in no
additional action. This would indicate that the user is not currently
enrolled in 3D Secure, but the API calls were successful.

FAILURE - The transaction resulted in an error. For example, with a
3DS transaction this would indicate that the user failed
authentication or an error was encountered while processing the
transaction.

ERROR - A service level error was encountered. These are
generally reserved for connectivity or API authentication issues. For
example, if your JWT was incorrectly signed, or Cardinal services
are currently unreachable.

Validated This value represents whether the transaction was successfully or
not

ErrorNumber Application error number. A non-zero value represents the error
encountered while attempting to process the message request.

ErrorDescription Application error description for the associated error number

Payment Payment Object

The payment object for the 3DS transactions is:

Field Name Description Required/ Optional/
Conditional

Field Definition

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

18

https://verifone.cloud/docs/online-payments/3dsecure

Enrolled Status of Authentication
eligibility. Possible Values:

Y = Yes - Bank is participating in
3D Secure protocol and will
return the ACSUrl

N = No - Bank is not
participating in 3D Secure
protocol

U = Unavailable - The DS or ACS
is not available for
authentication at the time of the
request

B = Bypass - Merchant
authentication rule is triggered
to bypass authentication in this
use case

Note: If the Enrolled value is
NOT Y, then the Consumer is
NOT eligible for Authentication.

 String (1)

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

19

https://verifone.cloud/docs/online-payments/3dsecure

CAVV Cardholder Authentication
Verification Value (CAVV)
Authentication Verification Value
(AVV) Universal Cardholder
Authentication Field (UCAF).
This value should be appended
to the authorization message
signifying that the transaction
has been successfully
authenticated. This value will be
encoded according to the
merchant's configuration in
either Base64 encoding or Hex
encoding. A Base64 encoding
merchant configuration will
produce values of 28 or 32
characters. A Hex encoding
merchant configuration will
produce values of 40 or 48
characters. When decoded, the
value will either be 20 bytes for
CAVV or 20 or 24 bytes if the
value is AAV (MasterCard UCAF).

O String (40)

ECIFlag Electronic Commerce Indicator
(ECI). The ECI value is part of
the two data elements that
indicate the transaction was
processed electronically. This
should be passed on the
authorization transaction to the
gateway/processor.

O String (40)

PAResStatus Transaction status result
identifier.

Possible Values:

Y – Successful Authentication

N – Failed Authentication

U – Unable to Complete
Authentication

A – Successful Attempts
Transaction

O String (1)

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

20

https://verifone.cloud/docs/online-payments/3dsecure

SignatureVerification Transaction Signature status
identifier.

Possible Values:

Y - Indicates that the signature
of the PARes has been validated
successfully and the message
contents can be trusted.

N - Indicates that the PARes
could not be validated. This
result could be for a variety of
reasons; tampering, certificate
expiration, etc., and the result
should not be trusted.

O String (1)

XID Transaction identifier resulting
from authentication processing.

Note: Gateway/Processor API
specification may require this
value to be appended to the
authorization message. This
value will be encoded according
to the merchant's configuration
in either Base64 encoding or
Hex encoding. A Base64
encoding merchant
configuration will produce
values of 28 characters. A Hex
encoding merchant
configuration will produce
values of 40 characters.

O String (40)

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

21

https://verifone.cloud/docs/online-payments/3dsecure

UCAFIndicator Universal Cardholder
Authentication Field (UCAF)
Indicator value provided by the
issuer.

Possible Values:

0 - Non-SecureCode transaction,
bypassed by the Merchant

1 - Merchant-Only SecureCode
transaction

2 - Fully authenticated
SecureCode transaction

Note: This field is only returned
for MasterCard transactions.

 String (1)

ACSTransactionId Unique transaction identifier
assigned by the ACS to identify
a single transaction

C String (36)

ThreeDSServerTransactionId Unique transaction identifier
assigned by the 3DS Server to
identify a single transaction

C String (36)

DSTransactionId Unique transaction identifier
assigned by the Directory
Server (DS) to identify a single
transaction.

Note: Required for Mastercard
Identity Check transaction in
Authorization

C String (36)

Some samples of different values returned to the payments.validated event are presented below. These JSON objects would be the first
argument and the Payload claim of the response JWT where a response JWT was returned.

Successful Response example:

{
"Validated": true,
"Payment": {
"Type": "CCA",
"ProcessorTransactionId": "uAthLfEYg83iEverTlk0",
"ExtendedData": {

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

22

https://verifone.cloud/docs/online-payments/3dsecure

"CAVV": "AAABAWFlmQAAAABjRWWZEEFgFz+=",
"ECIFlag": "05",
"XID": "dUF0aExmRVlnODNpRXZlclRsazA=",
"Enrolled": "Y",
"PAResStatus": "Y",
"SignatureVerification": "Y"
}
},
"ActionCode": "SUCCESS",
"ErrorNumber": 0,
"ErrorDescription": "Success"
}

API Level Error (will include a Response JWT to be validated):

{
"Validated": false,
"ErrorNumber": 4000,
"ErrorDescription": "Validation Error A valid merchant consumer session ID is required.",
"ActionCode": "ERROR",
"Payment": {}
}

Service Level Error (will not include a Response JWT):

{
"Validated": false,
"ErrorNumber": 1000,
"ErrorDescription": "Error processing request. We have encountered an unexpected error.",
"ActionCode": "ERROR",
"Payment": {}
}

1.4 Initialize JavaScript

To initiate the communication with the server, call the Cardinal.setup() function. All the necessary pre-processing steps should have been
completed by the time the consumer is ready to checkout. Listen for the payments.setupComplete event to get notified when the JavaScript
has finished initializing (Section 5.4.1).

1.4.1 Set up the JavaScript

Cardinal.setup function informs the JavaScript what type of event you are planning to complete on the page it is running on and what files it
needs to bootstrap to facilitate that event.

Field Type Required/ Optional Description

Initialization Type String R Tells Songbird.js which flow you
are setting up

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

23

https://verifone.cloud/docs/online-payments/3dsecure

Field Type Required/ Optional Description

Initialization Data JSON object R An object used to pass any
additional required data to
properly complete Songbird
initialization. This object will
differ from an initialization type
to another.

Initialization types

Key Description

init Set up the necessary files to run the authentication. You should use
this initialization type anytime you want to complete payer
authentication flows. This type would typically be used on a cart
page, or payment details collection page.

complete Set up the necessary files to return the authorization result to
Cardinal. You should use this initialization type if you only plan on
returning the authorization / authentication results to Cardinal. This
type would typically be used on an order complete page that
renders an 'Order was successfully submitted' message.

Example of Cardinal.setup:

Cardinal.setup("init", {
jwt: document.getElementById("JWTContainer").value
});

A common way to pass your JWT into the JavaScript is to place its value into a hidden input on page load. Using Cardinal.setup() function, you
can look for that element and select its value.

Example of placing a JWT into a hidden input:

<input type="hidden" id="JWTContainer" value="[Insert your JWT here]" />

1.5 Cardinal continue

After the Lookup Response is returned, pass the ACSUrl (acs_url), Payload (payload), and TransactionId (transaction_id) and include them in
the Cardinal.continue function in order to proceed with the authentication session. The Cardinal.continue will display a modal window and
automatically post the consumer's session over to the Issuer’s URL (acs_url) for authentication.

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

24

https://verifone.cloud/docs/online-payments/3dsecure

The syntax for Cardinal.continue:

Cardinal.continue(PAYMENT_BRAND, CONTINUE_DATA, ORDER_OBJECT, NEW_JWT)

Field Type Required/ Optional Description

Payment Brand String R The payment brand to continue.
For 3DS, the value ‘cca’ should
be passed.

Continue Object JSON object R A JSON object containing all the
necessary data to complete a
3DS post to an ACS to complete
a 3DS transaction

Order Object JSON object O As Order Object pass the
following object replacing the
‘authentication_id’ with the
value received in the lookup
response.

Example: {"OrderDetails":{
"TransactionId" :"transaction_id
"}}

JWT String O An updated JWT to use while
processing the transaction. This
allows the merchant to switch
JWT between init and continue
events.

Continue Object

Field Type Required/ Optional Description

AcsUrl String R The acs_url returned in the
lookup response

Payload String R The ‘payload’ field returned on
the lookup response

Cardinal.continue will only work after the payments.setupComplete event has been triggered. Cardinal.continue is suggested to be run later
in the flow if payments.setupComplete is not triggered yet.

Example of Cardinal.continue:

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

25

https://verifone.cloud/docs/online-payments/3dsecure

Cardinal.continue('cca',
{
"AcsUrl":
"https://testcustomer34.cardinalcommerce.com/merchantacsfrontend/pareq.jsp?vaa=b&gold=AAAAAAAA...AAAAAAA",
"Payload":
"eNpVUk1zgjAQvedXME7PJEFBVdKt1CECeDkVCk2PcfcnNjv8Kr+7tx4nlbGOcz/se6G1uMENPTPeeIz1G37WGEUth7YnpO21TfTvF3wDCBqspQ=
="
},
{
"OrderDetails":{
"TransactionId" :"123456abc"

}
}
);

1.6 BIN detection

To successfully complete the 3DS Method, the Issuing bank should be contacted to receive the browser information before the authentication
is started. Therefore, the BIN is required to be communicated to the JavaScript before sending the lookup request.

There are two ways to implement the BIN Detection to a merchant’s web application:

1) Field Decorator

This implementation is the simplest and recommended approach when the full PAN is available. A merchant may directly start the JavaScript,
provide the PAN and allow for payments.setupComplete event to complete. A new attribute to the input field to identify which field it maps to
within the Order Object needs to be added. The credit card number is mapped to the AccountNumber field, therefore for the BIN Detection
the AccountNumber will be passed to the attribute ‘data-cardinal-field’.

Field Decorator Example:

<input type="text" data-cardinal-field="AccountNumber" id="creditCardNumber" name="creditCardNumber" />

The field decorator will attach an event listener to the element that will update the BIN as the cardholder types it in. The BIN value will be
updated automatically if the cardholder changes cards or needs to correct an entry.

2) Event Based

The bin.process event is the recommended event base profiling the merchant uses a card that is stored on file. The merchant will need to
provide a minimum of the first six digits (e.g., BIN) up to the full card number of the consumer (e.g., max of 19 digits). The more digits of the
card number provided, the better chances of matching if there is a corresponding EMV 3DS Method URL.

Bin.process example:

Cardinal.trigger("bin.process", '1234567894561237');

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

26

https://verifone.cloud/docs/online-payments/3dsecure

1.7 Cardinal.trigger

Cardinal.trigger function triggers an event within Songbird. This is a way to actively send Songbird data instead of waiting passively for
events to occur.

Cardinal.trigger syntax:

Cardinal.trigger("EVENT_NAME_SPACE", 'DATA');

1.7.1 bin.process

For bin.process event described in BIN Detection.

Cardinal.trigger implementation example:

Cardinal.trigger("bin.process", '1234567894561237')
.then(function(results){
if(results.Status) {
// Bin profiling was successful. Some merchants may want to only move forward with CCA if profiling was
successful
} else {
// Bin profiling failed
}

// Bin profiling, if this is the card the end user is paying with you may start the CCA flow at this point or
send the lookup request
Cardinal.start('cca', myOrderObject);
})
.catch(function(error){
// An error occurred during profiling
})

1.7.2 jwt.update

jwt.update is an event to allow the merchant to change the JWT at any point. This event will update the local cached order object within the
JavaScript, but it will not push anything to the Cardinal infrastructure. This removed the need to pass in a new JWT into an event such as
Cardinal.start or Cardinal.continue.

Cardinal.trigger implementation example:

Cardinal.trigger('jwt.update', 'my_new_jwt_value');

JWT for authentication
The integration uses JWT as a method of authentication between the merchant and the 3DS Server. In this section, the generation and
validation of a JWT are discussed.

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

27

https://verifone.cloud/docs/online-payments/3dsecure

1. Create JWT to initialize the JavaScript

To initialize the JavaScript, a valid JWT is required. Any library supporting Jason Web Signature can be used. The JWT uses as signature a SHA-
256 HMAC hash algorithm and must be created on the server side for security reasons. During the onboarding to the 3DS service, a merchant
will receive three values used for authentication.

Claim Description

API identifier A non-secure value that should be passed within the JWT under the
‘iss’ (Issuer) claim

Org Unit Id A non-secure value that should be passed within the JWT under the
OrgUnitId claim

API Key A secure value that should never be rendered or displayed
anywhere your users could find it. The API Key should only be used
to sign the JWT and to verify a JWT signature from the JavaScript. It
should never be included within the JWT itself.

Required claims

Claim name Description

jti A unique identifier for this JWT. This field should change each time
a JWT is generated.

iat The epoch time in seconds of when the JWT was generated. This
allows us to determine how long a JWT has been around and
whether we consider it expired or not.

iss An identifier of who is issuing the JWT. We use this value to contain
the API Key identifier or name.

OrgUnitId The merchant SSO OrgUnitId

Payload The JSON data object being sent to the JavaScript. This object is
usually an Order object.

ReferenceId This is a merchant supplied identifier that can be used to match up
data collected from the 3DS Server. 3DS Server can then use data
collected to enable rules or enhance the authentication request.
This value should be parshed as ‘device_info_id’ in the lookup
request.

Optional claims

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

28

https://verifone.cloud/docs/online-payments/3dsecure

Claim name Description

ObjectifyPayload A boolean flag that indicates how 3DS Server API should consume
the Payload claim. When set to true, this tells 3DS Server the
Payload claim is an object. When set to false, the Payload claim is a
stringified object. Some JWT libraries do not support passing objects
as claims, this allows those who only allow strings to use their
libraries without customization.

exp Expiration - The numeric epoch time that the JWT should be
consider expired. This value is ignored if its larger than 4 hrs. By
default, we will not consider any JWT older than 4 hrs.

Other claims

Claim name Description

ConfirmUrl The merchant endpoint that will receive the post back from the
payment brand that contains the 3DS Server API response JWT
describing the result of redirecting to the payment brand.

JWT example

{
"jti": "a5a59bfb-ac06-4c5f-be5c-351b64ae608e",
"iat": 1448997865,
"iss": "56560a358b946e0c8452365ds",
"OrgUnitId": "565607c18b946e058463ds8r",
"Payload": {
"OrderDetails": {
"OrderNumber": "0e5c5bf2-ea64-42e8-9ee1-71fff6522e15",
"Amount": "1500",
"CurrencyCode": "840"
}
},
"ObjectifyPayload": true,
"ReferenceId": "c88b20c0-5047-11e6-8c35-8789b865ff15",
"exp": 1449001465,
"ConfirmUrl": 'https://mywebsite.com/confirmHandler'
}

2. JWT validation

When the JWT is received in the payments.validated event, the Response JWT shall be sent to the merchant’s backend to verify and obtain
the results.

Claim Description

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

29

https://verifone.cloud/docs/online-payments/3dsecure

aud Merchant jti Id - This is the 'jti' field from your request JWT echoed
back. This field allows you to match up your request JWT with
Cardinals response JWT.

jti JWT Id - A unique identifier for this response JWT. This value is
generated by Cardinal.

iat Issued At Time - This is a timestamp of when the JWT was
created.

iss Issuer - The request JWT's iss field echoed back.

ConsumerSessionId The unique session Id for the current user

Payload The response object for your request. This field will contain any
actual state information on the transaction. This is the decoded
data object that is passed into the payments.validated event as
the first argument.

Example of JWT Payload:

{
"iss": "56560a358b946e0c8452365ds",
"iat": 1471014492,
"exp": 1471021692,
"jti": "8af34811-f97d-495a-ad19-ec2f68004f28",
"ConsumerSessionId": "0e1ae450-df2b-4872-94f7-f129a2ddab18",
"Payload": {
"Validated": true,
"Payment": {
"Type": "CCA",
"ExtendedData": {
"CAVV": "AAABAWFlmQAAAABjRWWZEEFgFz+=",
"ECIFlag": "05",
"PAResStatus": "Y",
"SignatureVerification": "Y",
"XID": "MHEyQjFRQkttemdpaFlRdHowWTA=",
"Enrolled": "Y"
}
},
"ActionCode": "SUCCESS",
"ErrorNumber": 0,
"ErrorDescription": "Success"
}
}

Stringified JWT Sample:

{
"iss": "56560a358b946e0c8452365ds",
"iat": 1471015342,

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

30

https://verifone.cloud/docs/online-payments/3dsecure

"exp": 1471022542,
"jti": "55ebfa2a-665f-4d6b-81ea-37d1d4d12d9e",
"ConsumerSessionId": "fb3a97a3-0344-4d3d-93ea-6482d866ec97",
"Payload":
"{\"Validated\":true,\"Payment\":{\"Type\":\"CCA\",\"ExtendedData\":{\"CAVV\":\"AAABAWFlmQAAAABjRWWZEEFgFz+\\u00
3d\",\"ECIFlag\":\"05\",\"PAResStatus\":\"Y\",\"SignatureVerification\":\"Y\",\"XID\":\"MFpjUVpwb0FXcHdwMWJBdldw
NDA\\u003d\",\"Enrolled\":\"Y\"}},\"ActionCode\":\"SUCCESS\",\"ErrorNumber\":0,\"ErrorDescription\":\"Success\"}
"
}

https://verifone.cloud/docs/online-payments/3dsecure
Updated: 15-May-2024

31

https://verifone.cloud/docs/online-payments/3dsecure

