
https://verifone.cloud/docs/portal/administration/notifications
Updated: 29-May-2025

Notifications & Webhooks

Overview

You can use the?Notifications?sections in Verifone Central to search and filter your organisation’s webhooks
and email notifications.

The Notification Service allows you to get status updates on certain events/actions you subscribe to, and to
automate business processes like order management, accounting, or downloading reports. Data sent in the
notifications will be pushed to your email/URL.

Availability

Only users with Merchant Admin, Merchant Cashier or Merchant Supervisor roles can access this section.

Events

Events are the topics a notification would be 'listening' to. The notifications will be triggered as soon as there is
an event happening for one of the selected topics.

Transaction Events

Event Description

TxnAccountVerificationApproved

TxnAccountVerificationDeclined
An account/card verification

TxnAuthorisationApproved

TxnAuthorisationDeclined
An authorisation or preauthorisation

TxnCaptureApproved

TxnCaptureDeclined
A capture or completion

/docs/portal/administration/notifications

Event Description

TxnDelayedChargeApproved

TxnDelayedChargeDeclined
A single message sale (auth+capture) related to a preauth chain

TxnExtendApproved

TxnExtendDeclined
A preauth extend

TxnPreauthIncrementApproved

TxnPreauthIncrementDeclined
An increment for a preauth

TxnReauthorisationApproved

TxnReauthorisationDeclined
A preauth reauth

TxnRefundApproved

TxnRefundDeclined
A refund

TxnRefundPreviewCancelled A refund preview cancelled transaction

TxnRefundPreviewCustomerApproved A refund preview customer approved transaction

TxnSaleApproved

TxnSaleDeclined
A single message sale (auth+capture)

TxnSaleConfirmed A confirmation of sale (specific for crypto transactions)

TxnVoidApproved

TxnVoidDeclined
A void

Checkout Events

Event Description
Checkout - Transaction succeeded An successful checkout Transaction Success

Checkout - Transaction failed Checkout transaction failed

Checkout - Card token succeeded Successful card token transaction

Checkout - Card token failed Failed card token transaction

Checkout - 3DS authentication succeeded An successful checkout 3DS transaction

Event Description
Checkout - 3DS authentication failed A failed checkout 3DS authentication

Checkout - 3DS lookup failed 3DS lookup failed

Checkout - 3DS lookup succeeded 3DS lookup succeeded

Checkout - SMS delivery succeeded PBL SMS delivery succeeded

Checkout - Email delivery succeeded PBL Email delivery succeeded

Checkout - SMS delivery failed PBL SMS delivery failed

Checkout - Email delivery failed PBL Email delivery failed

Create notifications in Verifone Central

To use the information in the Notifications section in Verifone Central, follow these steps:

1. Log in to your Verifone Central account.

2. Navigate to Administration and click on Notifications.

3. The Notifications page will be displayed. Click on Create new notification.

 In the Notifications page, you can filter the already created notifications by name / email / URL and/or
use the Event type or the Status filters.

4. On the Create Notification page, provide the following information:
Notification name – used to identify the notification configuration in the listing
Organization(s)

By selecting an organization, you apply a scope to the configuration

By selecting the lowest level organization, you will receive messages for the selected
organization only

 Multiple organizations can be selected when creating a notification, if the same notification
must be sent to multiple organizations.

Events – notifications will be triggered as soon as an event takes place for one of the selected
transaction status updates (for more details regarding available events check the Events tables
above)
Delivery Method – specifies how notifications will be delivered. Depending on the selected
method, Verifone will send either an email with plain text describing the event or a webhook with
the transaction payload. Possible values:

Email – accepts only one email address

URL Endpoint – accepts only one webhook; selecting this option will provide two other
possibilities:

Event metadata only - webhooks with a limited payload

Full event payload - webhooks with full content payload (applicable only for
Transaction Events)

 When a new webhook is added, it should be loaded within 60 seconds. However, updates to existing webhooks
can take between 10 to 60 minutes depending on server load.

Notification payload variables

Parameter Name Type Format Email
Full

payload
Metadata Description

eventType String — ? ? ?

The event type for
which the notification
was sent. E.g.,
TxnSaleDeclined

objectType String — ? ? ?

In a transaction event
this would be
TransactionEvent
, and in a Checkout
event this would be
StandardEvents.

eventId String UUID ? ? ?

In transactions events
this would be the
Transaction ID, and in
Checkout events this
would be the Checkout
ID.

itemId String UUID ? ? ?

In transactions events
this would be the
Transaction ID.
The itemId is not
applicable to Checkout
events.

recordId String UUID ? ? ?

In transactions events
this would be the
Transaction ID, and in
Checkout events this
would be the Checkout
ID.

entityUid String UUID ? ? ?
The Verifone assigned
organization identifier.

eventDateTime Datetime
YYYY-MM-
DDThh:mm:ss.msZ

? ? ?
The date and time at
which the event
occurred.

source String — ? ? ?
The source of the event
information.

content Object — ? ? ?

The associated event
data. This is optional
and if specified will
vary according to the
event type.

content.id String UUID ? ? ? The Transaction ID.

Parameter Name Type Format Email
Full

payload
Metadata Description

content.currency_code String
three-letter ISO
4217 alphabetic
currency codes

? ? ?

A three-letter
alphabetic code that
represents the currency
used for the
transaction.

content.country_code String
2-letter ISO 3166
alpha-2 country
code

? ? ?

A 2-letter ISO 3166
alpha-2 country code
representing the
consumer's address.

content.created_at Datetime
YYYY-MM-
DDThh:mm:ss.msZ

? ? ?
The date and time the
transaction creation.

content.customer_ip String 32-bit number ? ? ?

A 32-bit number that
identifies a host on a
TCP/IP network of the
consumer.

content
.dynamic_descriptor String — ? ? ?

A short transaction
description that can be
included when creating
a transaction via the
Virtual Terminal, the
Checkout API, or the
eCom API.
This description might
be included in the bank
statement issued to the
consumer by some card
issuers.

content.amount Float — ? ? ?
The transaction
amount.

content
.payment_product String — ? ? ?

The type of product
used for payment. E.g.,
CARD, KLARA, SWISH
, CRYPTO, etc.

content
.payment_product_type String — ? ? ?

The brand of the
payment type used for
payment. E.g., VISA,
MASTERCARD, AMEX,
etc.

content
.processor_reference String — ? ? ?

Reference identifying
the transaction, as
provided by the
processor.

Parameter Name Type Format Email
Full

payload
Metadata Description

content
.transaction_type String — ? ? ?

The transaction type,
such as SALE,
AUTHORIZATION,
PREAUTH, etc.

content
.transaction_status String — ? ? ?

The current status of
the transaction. E.g.,
AUTHORISED,
CAPTURED, SETTLED
, CANCELLED, etc.

content.reason_code String — ? ? ?

A reason code assigned
by the acquiring
platform; '0000' in case
of success.

content.arn String — ? ? ?

The acquirer reference
number (ARN),
generated by the
acquirer at the time of
clearing for card
transactions.

content
.authorization_code String — ? ? ?

The credit card
authorization code
represents the five or
six numbers generated
by the issuing bank.

content
.shipping_information Object — ? ? ?

An optional object that
includes the consumer's
shipping information.

content
.shipping_information
.address

String — ? ? ?
The shipping (street)
address.

content
.shipping_information
.city

String — ? ? ? The shipping city.

content
.shipping_information
.country

String
A 2-letter ISO 3166
alpha-2 country
code

? ? ? The shipping country.

content.shipping.phone String — ? ? ?
The shipping phone
number.

content.shipping
.postal_code String — ? ? ?

The shipping postal
code.

content.shipping.state String — ? ? ? The shipping state.

content.user_agent String — ? ? ?

The full user agent
string of the device the
customer used to
submit the transaction.

Parameter Name Type Format Email
Full

payload
Metadata Description

content.cvv_present Boolean — ? ? ?
True if the card was
used with a CVV.

content.rrn String — ? ? ?
The payment
processor's retrieval
reference number.

content
.shopper_interaction String — ? ? ?

The sales channel that
was used to capture the
transaction. E.g.,
ECOMMERCE, MAIL,
PHONE, POS. etc.

content.stan String — ? ? ?

A number assigned by
a transaction initiator
(originator) to assist in
identifying a
transaction uniquely.
This property can be
used to store the
System Trace Audit
Number (STAN) as
used in the ISO 8583
and AS2805
specifications.

content.card_brand String — ? ? ?
Same as the payment
product type.

content.merchant_id String — ? ? ?

The identifier assigned
to the merchant entity
under the Payment
Provider Contract.

content
.merchant_reference String — ? ? ?

A reference specified
by the merchant to
identify the transaction.

content.poi_id String — ? ? ?

The Verifone assigned
ID to the point of the
interaction used for the
transaction, where
applicable.

content
.masked_card_number String — ? ? ?

Masked number of the
card used for payment.

content
.payment_summary
.captured_amount

String — ? ? ?
The amount that was
captured out of the total
transaction amount.

Parameter Name Type Format Email
Full

payload
Metadata Description

content
.threed_authentication Object — ? ? ?

3DS authentication
information, where
applicable. Read our 3-
D Secure article for
additional information.

content
.threed_authentication
.eci_flag

String — ? ? ?
The Electronic
Commerce Indicator
(ECI).

content
.threed_authentication
.enrolled

Boolean — ? ? ?
The payment card's
3DS enrollment status.

content
.threed_authentication
.cavv

String — ? ? ?

The Cardholder
Authentication
Verification
Value (CAVV)
cryptographic value.

content
.threed_authentication
.pares_status

String — ? ? ?

The Payment
Authentication
Response (PARes)
status.

content
.threed_authentication
.ds_transaction_id

String — ? ? ?
A unique transaction
identifier assigned by
the 3DS server.

content
.threed_authentication
.threeds_version

String — ? ? ?
The 3DS version used
to authenticate the
transaction.

Email payload sample

here is template : RECEIVED:

array (
EVENTID: ,
EVENTDATETIME : ,
ENTITYUID :36559df1-3f8b-492f-adf4-f09313e10c77,
EOENTITYUID:,
EVENTTYPE:Capture Approved,
ESTATEOWNER:,
SOURCE:pdsp,
COMPONENT:,
RECEIVED:
OBJECTTYPE:TransactionEvent
CONTENT:
TRANSACTIONID :5a8a72ae-6257-42c8-a0dd-bfa1d50c7d94,
TRANSACTIONTYPE : CAPTURE,
INITIATORTRACEID : 4187,
GATEWAYTRACEID : ,
CREATEDDATETIME : 2023-04-18T06:36:45.860Z,
POI : {},
MERCHANT : {UUID=36559df1-3f8b-492f-adf4-f09313e10c77, ID=RCTST1000095119,

https://verifone.cloud/docs/online-payments/3dsecure
https://verifone.cloud/docs/online-payments/3dsecure

LOCALE={COUNTRYCODE=US}, CONTRACTS=[{MCC=5965,
MERCHANTID=RCTST1000095119}]},
AMOUNT :{VALUE=460.06, CURRENCYCODE=USD},
INSTRUMENT :[{CARDBRAND=DINERS, INSTRUMENTTYPE=CARD,
MASKEDCARDNUMBER=361859****2226}, {INSTRUMENTTYPE=TOKEN}],
OUTCOME:[{ACQUIRERRESPONSECODE=000}, {RESPONSE=SUCCESS,
RESPONSECODE=0000}],
CUSTOMER :,
CONTEXT:{PAYMENTCONTEXT={SALESCHANNEL=ECOMMERCE, ACCOUNTTYPE=CREDIT,
AUTHENTICATIONMETHOD=[SECURE_ELECTRONIC_COMMERCE]}}
)

Webhook sample

Event metadata only

{
 "eventId": "2",
 "eventDateTime": "2020-03-23T11:07:28Z",
 "recordId": "1",
 "eventType": "TxnSaleApproved"
}

Full event payload

Webhook have been called: {
objectType: 'TransactionEvent',
eventId: 'f93fa575-3d2f-4a7f-b182-939c7c6ea610',
eventDateTime: '2023-05-02T12:16:56.077Z',
recordId: 'f93fa575-3d2f-4a7f-b182-939c7c6ea610',
entityUid: '07652580-1037-4901-92f2-74676cb8aa7e',
source: 'pdsp',
eventType: 'TxnAuthorisationApproved',
content: {
id: 'f93fa575-3d2f-4a7f-b182-939c7c6ea610',
currency_code: 'GBP',
created_at: '2023-05-02T12:16:56.077Z',
customer_ip: '127.0.0.1',
dynamic_descriptor: 'TEST AUTOMATION ECOM',
payment_product: 'CARD',
payment_product_type: 'MASTERCARD',
processor_reference:
'BM61NUSABF7:0001030001000206010079000312230502131656000412020000075882',
transaction_type: 'AUTHORISATION',
transaction_status: 'AUTHORISED',
reason_code: '0000',
arn: '020000075882',
authorization_code: '541657',
cvv_present: false,
rrn: '020000075882',
card_brand: 'MASTERCARD',
masked_card_number: '548016******7897',
merchant_id: '290010026',
merchant_reference: '5678',
shopper_interaction: 'ecommerce',
stan: '043026',
threed_authentication: {
eci_flag: '05',
enrolled: 'Y',
cavv: 'MTIzNDU2Nzg5MDEyMzQ1Njc4OTA=',
pares_status: 'Y',
ds_transaction_id: 'ea5e8cb3-69c1-4229-b484-2def1be9952c',
threeds_version: '2.1.0'
},
amount: '11.29',
payment_summary: {}
}
}

Update notifications in Verifone Central

Any notification can be edited as desired. The below updates can be applied to a notification:

Update the notification name
Add/remove organisation(s)
Add/remove events
Change the delivery method
Enable / disable / delete the notification

 A notification can be deleted only after being disabled.

Notification failures

Notification failures can occur only for webhook events, when the system fails to notify the merchant (e.g. URL
endpoint is not reachable or service is down/time out).

The failed notifications can be viewed in the Administration > Notifications > select the notification >
Notification Failures section from Verifone Central.

Notification Failures

Webhook signature verification

The authenticity and integrity of the webhook event can be verified by checking the signature provided in the
header: x-vfi-jws. This signature is used to validate that Verifone is the sender and that the message has not been
tampered with.

This signature is provided as JSON web signature (JWS) using the webhook body as the unencoded payload as
described in https://www.rfc-editor.org/rfc/rfc7797.

The public keys used to verify the signatures are provided in a JWKS (JSON web key set) file which can be
downloaded from the following URLs.

https://verifone.cloud/docs/portal/administration/notifications#C4
https://www.rfc-editor.org/rfc/rfc7797

Environment
Test

Production

To verify the signature of webhook payload the following steps need to be performed.

1. Ensure that the application has loaded the keys from the JWKS file. This file should be cached locally and
not downloaded from verifone on each request.

2. When the request is received, convert the http json body to canonicalized form: https://www.rfc-
editor.org/rfc/rfc8785.

3. Select the correct key from the JWKS matching the key id from the x-vfi-jws header.
4. Use the x-vfi-jws header and canonicalized body to verify the signature with the selected key.

 If the key id is not found in Step 3 then refresh the JWKS file as a new key may have been added.

Webhook signature verification sample

The following java code verifies a signature as described above and has dependencies on the following libraries:

https://github.com/erdtman/java-json-canonicalization
https://bitbucket.org/b_c/jose4j/src/master/

/**
 * Step 1 - Load signing keys via jwks file
 */

String JWKS_URL =
"https://vf11gtostorage1.blob.core.windows.net/test-webhook-sign-keys/test-webhook-sign-keys.jwks"
;

// on first startup we need to download the signing keys
// NOTE: this file should be cached locally and not downloaded each time
Path jwksLocalPath = Path.of("./test-webhook-sign-keys.jwks");
if (!Files.exists(jwksLocalPath)) {
 try (InputStream in = new URL(JWKS_URL).openStream()) {
 Files.copy(in, jwksLocalPath, StandardCopyOption.REPLACE_EXISTING);
 }
}

// load keys from file
String jkws = Files.readString(jwksLocalPath);
JsonWebKeySet jsonWebKeySet = new JsonWebKeySet(jkws);

/**
 * Step 2 - Convert webhook json body to canonicalized form
 */

String originalJsonBody = *JSON BODY FROM WEBHOOK*;
JsonCanonicalizer jsonCanonicalizer = new
 JsonCanonicalizer(originalJsonBody);
String canonicalizedJson = jsonCanonicalizer.getEncodedString();

/**

https://vf11gtostorage1.blob.core.windows.net/test-webhook-sign-keys/test-webhook-sign-keys.jwks
https://vf11gtostorage1.blob.core.windows.net/prod-webhook-sign-keys/prod-webhook-sign-keys.jwks
https://www.rfc-editor.org/rfc/rfc8785
https://www.rfc-editor.org/rfc/rfc8785
https://github.com/erdtman/java-json-canonicalization
https://bitbucket.org/b_c/jose4j/src/master/

 * Step 3 and 4- Select matching key for x-vfi-jws and validate signature
 */

JsonWebSignature verifierJws = new JsonWebSignature();

// set contents from x-vfi-jws header
verifierJws.setCompactSerialization(detachedContentJws);

// The canonicalized content is the payload
verifierJws.setPayload(canonicalizedJson);

// Pick the key to use for checking the signature. The key selected
// should have the same key id "kid" as the x-vfi-jws header
VerificationJwkSelector jwkSelector = new VerificationJwkSelector();
JsonWebKey jwkSelected = jwkSelector.select(verifierJws, jsonWebKeySet.getJsonWebKeys());

if (jwkSelected == null) {
 // if key can't be found then refresh signing keys as
 // a new key id may have been added
 try (InputStream in = new URL(JWKS_URL).openStream()) {
 Files.copy(in, jwksLocalPath, StandardCopyOption.REPLACE_EXISTING);
 }
 jkws = Files.readString(jwksLocalPath);
 jsonWebKeySet = new JsonWebKeySet(jkws);
 jwkSelected = jwkSelector.select(verifierJws, jsonWebKeySet.getJsonWebKeys());
}

// set key based on keyid selected from jwks
verifierJws.setKey(jwkSelected.getKey());

// Check the signature
boolean signatureVerified = verifierJws.verifySignature();

